Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1658-1666.doi: 10.19799/j.cnki.2095-4239.2023.0812
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Ziwei TANG(), Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU(
)
Received:
2023-11-13
Revised:
2023-12-05
Online:
2024-05-28
Published:
2024-05-28
Contact:
Huiling DU
E-mail:1715695867@qq.com;hldu@xust.edu.cn
CLC Number:
Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer[J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666.
11 | 邢子轩, 张凡, 武明虎, 等. 基于WD-GRU的锂离子电池剩余寿命预测[J]. 电源技术, 2022, 46(8): 867-871. |
XING Z X, ZHANG F, WU M H, et al. Remaining life prediction of lithium ion batteries based on WD-GRU[J]. Chinese Journal of Power Sources, 2022, 46(8): 867-871. | |
12 | 陈欣, 李云伍, 梁新成, 等. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. |
CHEN X, LI Y W, LIANG X C, et al. Battery health state estimation of combined Transformer-GRU based on modal decomposition[J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. | |
13 | CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 2022, 10: 19621-19628. |
14 | ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting? [EB/OL]. 2022: arXiv: 2205.13504. http://arxiv.org/abs/2205.13504 |
15 | SHI S Q, GAO J, LIU Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Physics B, 2016, 25(1): 018212. |
16 | ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[J]. ArXiv e-Prints, 2020: arXiv: . |
17 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. 2017: arXiv: 1706.03762. http://arxiv.org/abs/1706.03762 |
18 | 余宇峰, 朱跃龙, 万定生, 等. 基于滑动窗口预测的水文时间序列异常检测[J]. 计算机应用, 2014, 34(8): 2217-2220, 2226. |
YU Y F, ZHU Y L, WAN D S, et al. Time series outlier detection based on sliding window prediction[J]. Journal of Computer Applications, 2014, 34(8): 2217-2220, 2226. | |
19 | WILLIARD N, HE W, OSTERMAN M, et al. Comparative analysis of features for determining state of health in lithium-ion batteries[J]. International Journal of Prognostics and Health Management, 2020, 4(1): doi: 10.36001/IJPHM.2013.V4I1.1437. |
20 | SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Analysis, 2007. |
1 | LIU X Q, ZHU S L, LIANG Y Q, et al. 3D N-doped mesoporous carbon/SnO2 with polypyrrole coating layer as high-performance anode material for Li-ion batteries[J]. Journal of Alloys and Compounds, 2022, 892: 162083. |
2 | 刘巧云, 祁秀秀, 郝卫强. 锂电池用正极材料钴酸锂改性研究进展[J]. 电源技术, 2022, 46(12): 1357-1359. |
LIU Q Y, QI X X, HAO W Q. Research progress on modification of lithium cobalt oxide as cathode material for lithium battery[J]. Chinese Journal of Power Sources, 2022, 46(12): 1357-1359. | |
3 | 杨欢, 乔志军. 纳米SnO2锂电负极材料的研究进展[J]. 云南化工, 2020, 47(3): 5-6. |
YANG H, QIAO Z J. Research progress of nano SnO2 lithium battery anode materials[J]. Yunnan Chemical Technology, 2020, 47(3): 5-6. | |
4 | 张雨, 吕瑞华, 聂丽宇, 等. 浅谈基于BP神经网络对实验室锂电池循环性能预测研究[J]. 江西化工, 2020(3): 93-95. |
ZHANG Y, LYU R H, NIE L Y, et al. Study on prediction of lithium battery cycle performance based on BP neural network[J]. Jiangxi Chemical Industry, 2020(3): 93-95. | |
5 | 黄奂奇. 基于电化学热耦合模型的锂离子电池老化状态估计[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
HUANG H Q. Aging state estimation of lithium ion battery based on electrochemical thermal coupling model[D].Harbin: Harbin Institute of Technology, 2021. | |
6 | 黄泽波. 基于电化学模型估算锂电池SOC的方法研究[J]. 电源世界, 2016(7): 25-27. |
HUANG Z B. Lithium battery SOC estimation method study based on electrochemical model[J]. The World of Power Supply, 2016(7): 25-27. | |
7 | 刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292. |
LIU Y F, ZHAO G Q, PENG X Y. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292. | |
8 | 王超, 范兴明, 张鑫, 等. 基于IRVM的锂电池荷电状态评估方法与仿真验证[J]. 电子技术应用, 2018, 44(12): 127-130, 134. |
WANG C, FAN X M, ZHANG X, et al. An evaluation method of Li-ion batteries state of charge based on IRVM and verified by simulation[J]. Application of Electronic Technique, 2018, 44(12): 127-130, 134. | |
9 | 吴章玉, 朱成杰, 王鸣雁. 基于RNN的锂电池健康预测[J]. 绿色科技, 2021, 23(18): 201-203. |
WU Z Y, ZHU C J, WANG M Y. Health prediction of lithium battery based on RNN[J]. Journal of Green Science and Technology, 2021, 23(18): 201-203. | |
10 | GONG Y D, ZHANG X Y, GAO D Z, et al. State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm[J]. Journal of Energy Storage, 2022, 53(9): 1-13. |
[1] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[2] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[3] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[4] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[5] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[6] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[7] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[8] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[9] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[10] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[11] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[12] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[13] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
[14] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[15] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||