Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1784-1796.doi: 10.19799/j.cnki.2095-4239.2025.0262
• Energy Storage Materials and Devices • Previous Articles Next Articles
Ziming MO1(), Zongxin RAO1, Jianfei YANG1, Menghao YANG2, Liming CAI1(
)
Received:
2025-03-27
Revised:
2025-04-19
Online:
2025-05-28
Published:
2025-05-21
Contact:
Liming CAI
E-mail:2231636@tongji.edu.cn;lcai@tongji.edu.cn
CLC Number:
Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge[J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796.
1 | ADAIKKAPPAN M, SATHIYAMOORTHY N. Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review[J]. International Journal of Energy Research, 2022, 46(3): 2141-2165. DOI: 10.1002/er.7339. |
2 | DING Y L, CANO Z P, YU A P, et al. Automotive Li-ion batteries: Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019, 2(1): 1-28. DOI: 10.1007/s41918-018-0022-z. |
3 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010. |
4 | 李磊, 李钊, 姬丹, 等. 过充电触发的LFP和NCM锂离子电池的热失控行为: 差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. DOI: 10.19799/j.cnki.2095-4239.2021.0548. |
LI L, LI Z, JI D, et al. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: The differences and reasons[J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. DOI: 10.19799/j.cnki.2095-4239.2021.0548. | |
5 | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239. 2021. 0369. | |
6 | 汤元会, 袁博兴, 李杰, 等. 圆柱形锂离子电池在针刺条件下的安全性研究[J]. 储能科学与技术, 2024, 13(4): 1326-1334. DOI: 10. 19799/j.cnki.2095-4239.2023.0654. |
TANG Y H, YUAN B X, LI J, et al. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions[J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. DOI: 10.19799/j.cnki.2095-4239.2023.0654. | |
7 | ZHU X Q, WANG Z P, WANG Y T, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method[J]. Energy, 2019, 169: 868-880. DOI: 10.1016/j.energy.2018.12.041. |
8 | CHEN Y H. Recent advances of overcharge investigation of lithium-ion batteries[J]. Ionics, 2022, 28(2): 495-514. DOI: 10. 1007/s11581-021-04331-3. |
9 | KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489. DOI: 10.1016/j.jpowsour. 2007. 04.018. |
10 | LU C H, LIN S W. Dissolution kinetics of spinel lithium manganate and its relation to capacity fading in lithium ion batteries[J]. Journal of Materials Research, 2002, 17(6): 1476-1481. DOI: 10.1557/JMR.2002.0219. |
11 | REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340. DOI: 10.1016/j.jpowsour.2017.08.035. |
12 | VERBRUGGE M W, XIAO X C, BAKER D R. Experimental and theoretical examination of low-current overcharge at lithiated-graphite porous electrodes[J]. Journal of the Electrochemical Society, 2020, 167(8): 080523. DOI: 10.1149/1945-7111/ab8ce7. |
13 | QI C, ZHU Y L, GAO F, et al. Mathematical model for thermal behavior of lithium ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer, 2018, 124: 552-563. DOI: 10.1016/j.ijheatmasstransfer.2018.03.100. |
14 | YANG M J, RONG M Z, YE Y J, et al. Comprehensive analysis of gas production for commercial LiFePO4 batteries during overcharge-thermal runaway[J]. Journal of Energy Storage, 2023, 72: 108323. DOI: 10.1016/j.est.2023.108323. |
15 | GUO Q Z, LIU S Y, ZHANG J B, et al. Effects of charging rates on heat and gas generation in lithium-ion battery thermal runaway triggered by high temperature coupled with overcharge[J]. Journal of Power Sources, 2024, 600: 234237. DOI: 10.1016/j.jpowsour.2024.234237. |
16 | CHEN J Y, XU C S, WANG Q Z, et al. The thermal-gas coupling mechanism of lithium iron phosphate batteries during thermal runaway[J]. Journal of Power Sources, 2025, 625: 235728. DOI: 10.1016/j.jpowsour.2024.235728. |
17 | WANG K, WU D J, CHANG C Y, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. DOI: 10. 1016/j.jclepro.2023.139992. |
18 | NIE B S, DONG Y S, CHANG L. The evolution of thermal runaway parameters of lithium-ion batteries under different abuse conditions: A review[J]. Journal of Energy Storage, 2024, 96: 112624. DOI: 10.1016/j.est.2024.112624. |
19 | HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755. DOI: 10.1149/1. 1377592. |
20 | ZENG G H, BAI Z H, HUANG P F, et al. Thermal safety study of Li-ion batteries under limited overcharge abuse based on coupled electrochemical-thermal model[J]. International Journal of Energy Research, 2020, 44(5): 3607-3625. DOI: 10.1002/er. 5125. |
21 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. DOI: 10.1149/1.2221597. |
22 | LEE C H, BAE S J, JANG M. A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation[J]. Journal of Power Sources, 2015, 293: 498-510. DOI: 10.1016/j.jpowsour. 2015. 05.095. |
23 | NEWMAN J. Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model[J]. Journal of the Electrochemical Society, 1995, 142(1): 97-101. DOI: 10.1149/1. 2043956. |
24 | ÖZDEMIR T, EKICI Ö, KÖKSAL M. Numerical and experimental investigation of the electrical and thermal behaviors of the Li-ion batteries under normal and abuse operating conditions[J]. Journal of Energy Storage, 2024, 77: 109880. DOI: 10.1016/j.est. 2023.109880. |
25 | HAMISI C M, CHOMBO P V, LAOONUAL Y, et al. An electrothermal model to predict thermal characteristics of lithium-ion battery under overcharge condition[J]. Energies, 2022, 15(6): 2284. DOI: 10.3390/en15062284. |
26 | XU P P, LI J Q, CHAI Z X, et al. Experimental and modeling approaches to investigate overcharge-induced thermal runaway behavior for LiFePO4 battery[J]. Journal of Energy Storage, 2024, 92: 111687. DOI: 10.1016/j.est.2024.111687. |
27 | LI K, LI Y F, SHEN W J, et al. Mitigation strategy for Li-ion battery module thermal runaway propagation triggered by overcharging[J]. International Journal of Thermal Sciences, 2024, 198: 108880. DOI: 10.1016/j.ijthermalsci.2024.108880. |
28 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3. |
29 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNix Coy Mnz O2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. DOI: 10.1016/j.apenergy.2015.04.118. |
30 | LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J]. Journal of the Electrochemical Society, 2015, 162(10): A2163-A2173. DOI: 10.1149/2.0751510jes. |
31 | WANG H Y, TANG A D, HUANG K L. Oxygen evolution in overcharged LiNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588. DOI: 10.1002/cjoc.201180284. |
32 | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. DOI: 10. 1016/j.apenergy.2018.06.126. |
33 | ZHANG P F, LU J J, YANG K B, et al. A 3D simulation model of thermal runaway in Li-ion batteries coupled particles ejection and jet flow[J]. Journal of Power Sources, 2023, 580: 233357. DOI: 10.1016/j.jpowsour.2023.233357. |
34 | E J Q, XIAO H X, TIAN S C, et al. A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion[J]. Renewable Energy, 2024, 229: 120762. DOI: 10.1016/j.renene.2024.120762. |
35 | PENG R Q, KONG D P, PING P, et al. Thermal runaway modeling of lithium-ion batteries at different scales: Recent advances and perspectives[J]. Energy Storage Materials, 2024, 69: 103417. DOI: 10.1016/j.ensm.2024.103417. |
36 | ZHAO R C, LAI Z D, LI W H, et al. Development of a coupled model of heat generation and jet flow of lithium-ion batteries during thermal runaway[J]. Journal of Energy Storage, 2023, 63: 107048. DOI: 10.1016/j.est.2023.107048. |
37 | ZHU Y L, WANG C J, GAO F, et al. Rupture and combustion characteristics of lithium-ion battery under overcharge[J]. Journal of Energy Storage, 2021, 38: 102571. DOI: 10.1016/j.est. 2021. 102571. |
38 | PASQUIER A D, DISMA F, BOWMER T, et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(2): 472-477. DOI: 10.1149/1.1838287. |
39 | KIM J, MALLARAPU A, FINEGAN D P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: 229496. DOI: 10.1016/j.jpowsour.2021.229496. |
40 | OSTANEK J K, PARHIZI M, LI W S, et al. CFD-based thermal abuse simulations including gas generation and venting of an 18650 Li-ion battery cell[J]. Journal of the Electrochemical Society, 2023, 170(9): 090512. DOI: 10.1149/1945-7111/acf4c1. |
[1] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[2] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[3] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[4] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[5] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[6] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[7] | Peng PENG, Chengdong WANG, Man CHEN, Qingsong WANG, Qikai LEI, Kaiqiang JIN. Hazard assessment of thermal runaway in a lithium-titanate battery energy storage power plant [J]. Energy Storage Science and Technology, 2025, 14(4): 1617-1630. |
[8] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[9] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[10] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[11] | Wenqiang FAN, Zinan SHI, Daiming YANG, Huishi LIANG, Ye CHEN. Experimental study on the suppression effect of different coolants on battery thermal runaway [J]. Energy Storage Science and Technology, 2025, 14(4): 1554-1563. |
[12] | Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. |
[13] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[14] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[15] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||