Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1657-1667.doi: 10.19799/j.cnki.2095-4239.2024.1044
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yongqi LI1(), Zhiyuan LI2, Youwei WEN1, Chengdong WANG2, Qiangling DUAN2, Qingsong WANG2(
)
Received:
2024-11-07
Revised:
2024-12-29
Online:
2025-04-28
Published:
2025-05-20
Contact:
Qingsong WANG
E-mail:13926159055@139.com;pinew@ustc.edu.cn
CLC Number:
Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667.
1 | WANG Y, FENG X N, GUO D X, et al. Temperature excavation to boost machine learning battery thermochemical predictions[J]. Joule, 2024, 8(9): 2639-2651. DOI: 10.1016/j.joule.2024.07.002. |
2 | LU Z X, WANG J, FENG W L, et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries[J]. Advanced Materials, 2023, 35(26): 2211461. DOI: 10.1002/adma.202211461. |
3 | WANG L L, ZHU J C, LI N, et al. Superior electrochemical performance of alkali metal anodes enabled by milder Lewis acidity[J]. Energy & Environmental Science, 2024, 17(10): 3470-3481. DOI: 10.1039/D4EE00900B. |
4 | TARASCON J M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness[J]. Joule, 2020, 4(8): 1616-1620. DOI: 10.1016/j.joule.2020.06.003. |
5 | ZHU K J, SUN Z Q, LI Z P, et al. Aqueous sodium ion hybrid batteries with ultra-long cycle life at -50 ℃[J]. Energy Storage Materials, 2022, 53: 523-531. DOI: 10.1016/j.ensm.2022.09.019. |
6 | PARK S, WANG Z, CHOUDHARY K, et al. Obtaining V2(PO4)3 by sodium extraction from single-phase NaxV2(PO4)3 (1 < x < 3) positive electrode materials[J]. Nature Materials, 2024[2024-11-04]. https://www.nature.com/articles/s41563-024-02023-7. DOI: 10.1038/s41563-024-02023-7. |
7 | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. DOI: 10. 1016/j.apenergy.2018.06.126. |
8 | ZHANG Y, SONG L F, TIAN J M, et al. Modeling the propagation of internal thermal runaway in lithium-ion battery[J]. Applied Energy, 2024, 362: 123004. DOI: 10.1016/j.apenergy.2024. 123004. |
9 | WANG G Q, PING P, PENG R Q, et al. A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system[J]. Renewable and Sustainable Energy Reviews, 2023, 186: 113672. DOI: 10.1016/j.rser.2023.113672. |
10 | WANG G Q, KONG D P, PING P, et al. Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network[J]. Applied Energy, 2023, 334: 120660. DOI: 10.1016/j.apenergy. 2023.120660. |
11 | JIA Z Z, MIN Y Y, QIN P, et al. Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries[J]. Journal of Energy Chemistry, 2024, 89: 195-207. DOI: 10.1016/j.jechem. 2023.09.052. |
12 | JIA Z Z, SONG L F, MEI W X, et al. The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries[J]. Applied Energy, 2022, 327: 120100. DOI: 10.1016/j.apenergy.2022.120100. |
13 | MEI W X, LIU Z, WANG C D, et al. operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. DOI: 10.1038/s41467-023-40995-3. |
14 | WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190. |
15 | PENG Y, YANG L Z, JU X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: 120916. DOI: 10.1016/j.jhazmat.2019. 120916. |
16 | LI J Y, TONG B, GAO P, et al. A novel method to determine the multi-phase ejection parameters of high-density battery thermal runaway[J]. Journal of Power Sources, 2024, 592: 233905. DOI: 10.1016/j.jpowsour.2023.233905. |
17 | HWANG S, LEE Y, JO E, et al. Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18883-18888. DOI: 10.1021/acsami.7b04478. |
18 | HEUBNER C, SCHNEIDER M, MICHAELIS A. Heat generation rates of NaFePO4 electrodes for sodium-ion batteries and LiFePO4 electrodes for lithium-ion batteries: A comparative study[J]. Journal of Solid State Electrochemistry, 2018, 22(4): 1099-1108. DOI: 10.1007/s10008-017-3828-4. |
19 | ROBINSON J B, FINEGAN D P, HEENAN T M M, et al. Microstructural analysis of the effects of thermal runaway on Li-ion and Na-ion battery electrodes[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 011010. DOI: 10. 1115/1.4038518. |
20 | BORDES A, MARLAIR G, ZANTMAN A, et al. Safety evaluation of a sodium-ion cell: Assessment of vent gas emissions under thermal runaway[J]. ACS Energy Letters, 2022, 7(10): 3386-3391. DOI: 10.1021/acsenergylett.2c01667. |
21 | YUE Y B, JIA Z Z, LI Y Q, et al. Thermal runaway hazards comparison between sodium-ion and lithium-ion batteries using accelerating rate calorimetry[J]. Process Safety and Environmental Protection, 2024, 189: 61-70. DOI: 10.1016/j.psep.2024.06.032. |
22 | YANG C, XIN S, MAI L Q, et al. Materials design for high-safety sodium-ion battery[J]. Advanced Energy Materials, 2021, 11(2): 2000974. DOI: 10.1002/aenm.202000974. |
23 | HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: 121885. DOI: 10.1016/j.energy.2021.121885. |
24 | HUANG Z H, YU Y, DUAN Q L, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778. DOI: 10.1016/j.apenergy.2022.119778. |
25 | LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254. DOI: 10.1016/j.jhazmat.2019.03.116. |
26 | ZHOU Z Z, ZHOU X D, PENG Y, et al. Quantitative study on the thermal failure features of lithium iron phosphate batteries under varied heating powers[J]. Applied Thermal Engineering, 2021, 185: 116346. DOI: 10.1016/j.applthermaleng.2020.116346. |
27 | WEI G, HUANG R J, ZHANG G X, et al. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards[J]. Applied Energy, 2023, 349: 121651. DOI: 10.1016/j.apenergy. 2023.121651. |
28 | MEI W X, CHENG Z X, WANG L B, et al. Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery[J]. Journal of Energy Chemistry, 2025, 102: 18-26. DOI: 10.1016/j.jechem.2024.10.036. |
29 | LI Z Y, CHENG Z X, YU Y, et al. Thermal runaway comparison and assessment between sodium-ion and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2025, 193: 842-855. DOI: 10.1016/j.psep.2024.11.118. |
[1] | Youwei WEN, Anqi TENG, Yongqi LI, Jiamin TIAN, Kangjie DING, Qiangling DUAN, Qingsong WANG. Electrical performance and heat production behavior of sodium-ion batteries at different discharge rate [J]. Energy Storage Science and Technology, 2025, 14(4): 1687-1697. |
[2] | Lan WU, Jie YANG, Lei GENG, Run HU, Shanglong PENG. Residual alkali converted sodium compensation cladding on the surface of sodium ion battery cathode [J]. Energy Storage Science and Technology, 2025, 14(1): 21-29. |
[3] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. |
[4] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[5] | Cuihong ZENG, Xiujuan CHEN, Man LI, Wenji YIN, Jiming PENG, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3731-3741. |
[6] | Ding ZHANG, Zixian YE, Zhenming LIU, Qun YI, Lijuan SHI, Huijuan GUO, Yi HUANG, Li WANG, Xiangming HE. Research progress of black phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490. |
[7] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[8] | Junpeng GUO, Qi SUN, Yuefang CHEN, Yuwen ZHAO, Huan YANG, Zhijia ZHANG. Preparation of three-dimensional multistage iron oxide/carbon nanofiber integrated electrode and sodium storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1469-1479. |
[9] | Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. |
[10] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[11] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[12] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[13] | Fei LIU, Peiwen ZHAO, Jingxiang ZHAO, Xianwei SUN, Miaomiao LI, Jinghao WANG, Yanxin YIN, Zuoqiang DAI, Lili ZHENG. Research progress of hard carbon anode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3497-3509. |
[14] | Zhihui GUO, Xiaodan CUI, Linshuang ZHAO, Jiawei CHEN. Fire and gas explosion hazards of high-nickel lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 193-200. |
[15] | Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||