Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 721-742.doi: 10.19799/j.cnki.2095-4239.2022.0620
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xue YUAN1(), Hongji LI1, Wenhui BAI1, Zhengxi LI2, Libin YANG2, Kai WANG2, Zhe CHEN1()
Received:
2022-10-24
Revised:
2022-12-10
Online:
2023-03-05
Published:
2022-12-19
Contact:
Zhe CHEN
E-mail:yuanxue9912@163.com;chenz@ncepu.edu.cn
CLC Number:
Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 721-742.
Fig. 4
(a) N2 adsorption and desorption isotherm of porous carbon material generated by H3PO4 activation of pomelo peel (the inset shows the pore size distribution)[61]; (b) Pore size distribution of HPC-1-1, HPC-1-2, HPC-2-2 and HPC-2-4[62]; (c)—(d) SEM image of PC-3 and its corresponding element distribution; (e) XPS map of PC-3; (f) High rate XPS map of P element[64]"
Fig. 16
High-resolution TEM and SAED images of (a) CC-Pre-800, (b) CC-1200, and (c) CC-1600; (d)Size distribution from a mercury intrusion porosimetry (inset: relation curve of total intrusion volume and carbonization temperature); (e) NLDFT pore size distribution (inset: nitrogen adsorption/desorption isotherms); (f) Cyclic capability of CCs at a current rate of 0.1 C; (g) SAXS patterns (inset: relation curve of the diameters of the closed pores and carbonization temperature); (h) Sectional SEM images of pristine, first discharged and 200th dis-charged CC-1600 electrodes; (i) Pore structure comparison between low and high temperature samples including BET surface area and closed pore volume (obtained from true density tests)[108]"
1 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
2 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
3 | ROLISON D R, NAZAR L F. Electrochemical energy storage to power the 21st century[J]. MRS Bulletin, 2011, 36(7): 486-493. |
4 | KUNDU D P, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie (International Ed in English), 2015, 54(11): 3431-3448. |
5 | WANG L P, YU L H, WANG X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9353-9378. |
6 | ELLIS B L, MAKAHNOUK W R M, MAKIMURA Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007, 6(10): 749-753. |
7 | YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-517. |
8 | FANG C, HUANG Y H, ZHANG W X, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(5): doi: 10.1002/aenm.201501727. |
9 | 张宁, 刘永畅, 陈程成, 等. 钠离子电池电极材料研究进展[J]. 无机化学学报, 2015, 31(9): 1739-1750. |
ZHANG N, LIU Y C, CHEN C C, et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1739-1750. | |
10 | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. |
11 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
12 | CAO W, ZHANG E J, WANG J, et al. Potato derived biomass porous carbon as anode for potassium ion batteries[J]. Electrochimica Acta, 2019, 293: 364-370. |
13 | KIM H, SEO D H, KIM H, et al. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M=Fe, Mn, Co) anodes in lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24(4): 720-725. |
14 | ANTONIETTI M, CHEN X D, YAN R Y, et al. Storing electricity as chemical energy: Beyond traditional electrochemistry and double-layer compression[J]. Energy & Environmental Science, 2018, 11(11): 3069-3074. |
15 | LI S, DONG Y F, XU L, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(21): 3545-3553. |
16 | BALOGUN M S, LUO Y, QIU W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178. |
17 | ZOU L, KANG F Y, ZHENG Y P, et al. Modified natural flake graphite with high cycle performance as anode material in lithium ion batteries[J]. Electrochimica Acta, 2009, 54(15): 3930-3934. |
18 | HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): doi: 10.1002/aenm.201602898. |
19 | ZHANG L X, LIU Z H, CUI G L, et al. Biomass-derived materials for electrochemical energy storages[J]. Progress in Polymer Science, 2015, 43: 136-164. |
20 | WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428. |
21 | CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
22 | HEINIMÖ J, JUNGINGER M. Production and trading of biomass for energy-An overview of the global status[J]. Biomass and Bioenergy, 2009, 33(9): 1310-1320. |
23 | TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: A review[J]. Bioresource Technology, 2016, 212: 318-333. |
24 | WANG Q Q, ZHU X S, LIU Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. |
25 | WU L M, BUCHHOLZ D, VAALMA C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries[J]. ChemElectroChem, 2016, 3(2): 292-298. |
26 | RATH P C, PATRA J, HUANG H T, et al. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries[J]. ChemSusChem, 2019, 12(10): 2302-2309. |
27 | HUANG Q, SONG S, CHEN Z, et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater: State-of-the-art review[J]. Biochar, 2019, 1(1): 45-73. |
28 | LOTFABAD E M, DING J, CUI K, et al. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano, 2014, 8(7): 7115-7129. |
29 | BHARTI V, GANGADHARAN A, RAO T, et al. Carbon soot over layered sulfur impregnated coconut husk derived carbon: An efficient polysulfide suppressor for lithium sulfur battery[J]. Materials Today Communications, 2020, 22: doi: 10.1016/j.mtcomm.2019.100717. |
30 | JIANG Q, ZHANG Z H, YIN S Y, et al. Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries[J]. Applied Surface Science, 2016, 379: 73-82. |
31 | XU Z G. Corncob-derived porous carbon as an interlayer coating to improve the performance of lithium sulphur battery[J]. International Journal of Electrochemical Science, 2017: 4515-4527. |
32 | HAO E C, LIU W, LIU S, et al. Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(5): 2204-2214. |
33 | SHEN Y L, SUN S J, YANG M, et al. Typha-derived hard carbon for high-performance sodium ion storage[J]. Journal of Alloys and Compounds, 2019, 784: 1290-1296. |
34 | ZHU Z Y, LIANG F, ZHOU Z R, et al. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(4): 1513-1522. |
35 | ZHANG N, LIU Q, CHEN W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources, 2018, 378: 331-337. |
36 | QIN D C, LIU Z Y, ZHAO Y Z, et al. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode[J]. Carbon, 2018, 130: 664-671. |
37 | OU J K, WANG J Y, ZHAO G, et al. Buckwheat derived nitrogen-rich porous carbon material with a high-performance Na-storage[J]. Journal of Porous Materials, 2020, 27(4): 1139-1147. |
38 | WANG X K, SHI J, MI L W, et al. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries[J]. Rare Metals, 2020, 39(9): 1053-1062. |
39 | 钟家宝, 李瑀, 王玲, 等. 梧桐果壳衍生硬碳用作钠离子电池负极材料[J]. 功能高分子学报, 2022, 35(5): 408-416. |
ZHONG J B, LI Y, WANG L, et al. Sycamore husk-derived hard carbon as anode material for sodium-ion batteries[J]. Journal of Functional Polymers, 2022, 35(5): 408-416. | |
40 | YANG T Z, QIAN T, WANG M F, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(3): 539-545. |
41 | ARIE A A, TEKIN B, DEMIR E, et al. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery[J]. Materials Technology, 2019, 34(9): 515-524. |
42 | SHENG C D, AZEVEDO J L T. Estimating the higher heating value of biomass fuels from basic analysis data[J]. Biomass and Bioenergy, 2005, 28(5): 499-507. |
43 | BISWAS B, PANDEY N, BISHT Y, et al. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk[J]. Bioresource Technology, 2017, 237: 57-63. |
44 | GUO F Q, JIANG X C, JIA X P, et al. Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors[J]. Journal of Electroanalytical Chemistry, 2019, 844: 105-115. |
45 | LUO D H, HAN P, SHI L D, et al. Biomass-derived nitrogen/oxygen co-doped hierarchical porous carbon with a large specific surface area for ultrafast and long-life sodium-ion batteries[J]. Applied Surface Science, 2018, 462: 713-719. |
46 | DING J, WANG H L, LI Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7(12): 11004-11015. |
47 | LYU T Y, LAN X X, LIANG L Z, et al. Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion storage[J]. Electrochimica Acta, 2021, 365: doi: 10.1016/j.electacta.2020.137356. |
48 | DING J, ZHANG Y, HUANG Y D, et al. Sulfur and phosphorus co-doped hard carbon derived from oak seeds enabled reversible sodium spheres filling and plating for ultra-stable sodium storage[J]. Journal of Alloys and Compounds, 2021, 851: doi: 10.1016/j.jallcom.2020.156791. |
49 | SUSANTI R F, ALVIN S, KIM J. Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step[J]. Journal of Industrial and Engineering Chemistry, 2020, 91: 317-329. |
50 | CONG L, TIAN G R, LUO D X, et al. Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 871: doi: 10.1016/j.jelechem.2020.114249. |
51 | SEKAR M, MATHIMANI T, ALAGUMALAI A, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil-Bottlenecks and scope[J]. Fuel, 2021, 283: doi: 10.1016/j.fuel.2020.119190. |
52 | PEI L Y, CAO H L, YANG L T, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics, 2020, 26(11): 5535-5542. |
53 | ZHANG Y J, LI X, DONG P, et al. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42796-42803. |
54 | QIN D C, ZHANG F, DONG S Y, et al. Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes[J]. RSC Advances, 2016, 6(108): 106218-106224. |
55 | WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
56 | BUDINOVA T, EKINCI E, YARDIM F, et al. Characterization and application of activated carbon produced by H3PO4 and water vapor activation[J]. Fuel Processing Technology, 2006, 87(10): 899-905. |
57 | PRAHAS D, KARTIKA Y, INDRASWATI N, et al. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization[J]. Chemical Engineering Journal, 2008, 140(1/2/3): 32-42. |
58 | TANG W J, ZHANG Y F, ZHONG Y, et al. Natural biomass-derived carbons for electrochemical energy storage[J]. Materials Research Bulletin, 2017, 88: 234-241. |
59 | BAG O, TEKIN K, KARAGOZ S. Microporous activated carbons from lignocellulosic biomass by KOH activation[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(12): 1030-1037. |
60 | BASTA A H, FIERRO V, EL-SAIED H, et al. 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons[J]. Bioresource Technology, 2009, 100(17): 3941-3947. |
61 | HONG K L, QIE L, ZENG R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12733-12738. |
62 | WANG H L, YU W H, SHI J, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 188: 103-110. |
63 | XU Z P, HUANG Y, DING L, et al. Highly stable basswood porous carbon anode activated by phosphoric acid for a sodium ion battery[J]. Energy & Fuels, 2020, 34(9): 11565-11573. |
64 | ZHU Y D, HUANG Y, CHEN C, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochimica Acta, 2019, 321: doi: 10.1016/j.electacta.2019.134698. |
65 | QU Y H, GUO M M, WANG X W, et al. Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 791: 874-882. |
66 | YU P F, ZHANG W C, YANG Y H, et al. Facile construction of uniform ultramicropores in porous carbon for advanced sodium-ion battery[J]. Journal of Colloid and Interface Science, 2021, 582: 852-858. |
67 | GUO L, AN Y, FEI H, et al. Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries[J]. Materials Technology, 2017, 32(10): 592-597. |
68 | CAO L Y, HUI W L, XU Z W, et al. Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 695: 632-637. |
69 | WANG J, YAN L, REN Q J, et al. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery[J]. Electrochimica Acta, 2018, 291: 188-196. |
70 | SEKAR S, AQUEEL AHMED A T, KIM D Y, et al. One-pot synthesized biomass C-Si nanocomposites as an anodic material for high-performance sodium-ion battery[J]. Nanomaterials (Basel, Switzerland), 2020, 10(9): doi: 10.3390/nano10091728. |
71 | XIONG W, WANG Z Y, ZHANG J Q, et al. Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2017, 7: 229-235. |
72 | XU F, TANG Z W, HUANG S Q, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms8221. |
73 | ZHANG J Y, CHEN Z Y, WANG G Y, et al. Eco-friendly and scalable synthesis of micro-/ mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries[J]. Applied Surface Science, 2020, 533: doi: 10.1016/j.apsusc.2020.147511. |
74 | LI Y M, XU S Y, WU X Y, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(1): 71-77. |
75 | LIAN Y J, XIN W L, ZHANG M, et al. Low-content Ni-doped CoS2 embedded within N, P-codoped biomass-derived carbon spheres for enhanced lithium/sodium storage[J]. Journal of Materials Science, 2019, 54(11): 8504-8514. |
76 | SHEN F, ZHU H L, LUO W, et al. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 23291-23296. |
77 | LUO W, SCHARDT J, BOMMIER C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10662-10666. |
78 | LI D H, SUN Y Y, CHEN S, et al. Highly porous FeS/carbon fibers derived from Fe-carrageenan biomass: High-capacity and durable anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(20): 17175-17182. |
79 | ZHANG Y H, LV C X, WANG X, et al. Boosting sodium-ion storage by encapsulating NiS (CoS) hollow nanoparticles into carbonaceous fibers[J]. ACS Applied Materials & Interfaces, 2018, 10(47): 40531-40539. |
80 | LIU H L, LV C X, CHEN S, et al. Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 54-59. |
81 | KIM N R, YUN Y S, SONG M Y, et al. Citrus-peel-derived, nanoporous carbon nanosheets containing redox-active heteroatoms for sodium-ion storage[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3175-3181. |
82 | WANG H Y, JIANG H, HU Y J, et al. Interface-engineered MoS2/C nanosheet heterostructure arrays for ultra-stable sodium-ion batteries[J]. Chemical Engineering Science, 2017, 174: 104-111. |
83 | WANG Q D, ZHAO C L, LU Y X, et al. Advanced nanostructured anode materials for sodium-ion batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2017, 13(42): doi: 10.1002/smll.201701835. |
84 | HU H Y, XIAO Y, LING W, et al. A stable biomass-derived hard carbon anode for high-performance sodium-ion full battery[J]. Energy Technology, 2021, 9(1): doi: 10.1002/ente.202000730. |
85 | DAN R Q, CHEN W M, XIAO Z W, et al. N-doped biomass carbon/reduced graphene oxide as a high-performance anode for sodium-ion batteries[J]. Energy & Fuels, 2020, 34(3): 3923-3930. |
86 | ZOU L, LAI Y Q, HU H X, et al. N/S Co-doped 3 D porous carbon nanosheet networks enhancing anode performance of sodium-ion batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2017, 23(57): 14261-14266. |
87 | ZHAO Q, MENG Y, LI J, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method[J]. Applied Surface Science, 2019, 481: 473-483. |
88 | GAO L F, MA J Q, LI S P, et al. 2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries[J]. Nanoscale, 2019, 11(26): 12626-12636. |
89 | YIN Y Y, ZHANG Y, LIU N N, et al. Biomass-derived P/N-Co-doped carbon nanosheets encapsulate Cu3P nanoparticles as high-performance anode materials for sodium-ion batteries[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00316. |
90 | YUE L, XU W Y, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Applied Surface Science, 2021, 546: doi: 10.1016/j.apsusc.2021.149168. |
91 | SHEN H T, ZHAO H Q, KANG M M, et al. Sodium storage in coal/biomass-derived carbon/carbon 3D networks[J]. ChemElectroChem, 2019, 6(17): 4541-4544. |
92 | WANG Y Y, HOU B H, NING Q L, et al. Hierarchically porous nanosheets-constructed 3D carbon network for ultrahigh-capacity supercapacitor and battery anode[J]. Nanotechnology, 2019, 30(21): doi: 10.1088/1361-6528/ab043a. |
93 | ZHAO G Y, YU D F, CHEN C, et al. One-step production of carbon nanocages for supercapacitors and sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 878: doi: 10.1016/j.jelechem.2020.114551. |
94 | WEN Y, HE K, ZHU Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: doi: 10.1038/ncomms5033. |
95 | SUN N, LIU H, XU B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20560-20566. |
96 | FENG Y M, TAO L, ZHENG Z F, et al. Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism[J]. Energy Storage Materials, 2020, 31: 274-309. |
97 | LIN M, DENG M D, ZHOU C J, et al. Popcorn derived carbon enhances the cyclic stability of MoS2 as an anode material for sodium-ion batteries[J]. Electrochimica Acta, 2019, 309: 25-33. |
98 | ZHAO G Y, YU D F, ZHANG H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy, 2020, 67: doi: 10.1016/j.nanoen.2019.104219. |
99 | CHEN S L, FENG F, MA Z F. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: doi: 10.1016/j.coco.2020.100447. |
100 | LIU Y C, SHI M J, YAN C, et al. Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6583-6592. |
101 | ZHU Y Y, CHEN M M, LI Q, et al. A porous biomass-derived anode for high-performance sodium-ion batteries[J]. Carbon, 2018, 129: 695-701. |
102 | ZHANG F, YAO Y G, WAN J Y, et al. High temperature carbonized grass as a high performance sodium ion battery anode[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 391-397. |
103 | WANG C W, HUANG J F, LI J Y, et al. Revealing the effect of nanopores in biomass-derived carbon on its sodium-ion storage behavior[J]. ChemElectroChem, 2020, 7(1): 201-211. |
104 | LIU T, LI X F. Biomass-derived nanostructured porous carbons for sodium ion batteries: A review[J]. Materials Technology, 2019, 34(4): 232-245. |
105 | QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201700403. |
106 | ARIE A A, KRISTIANTO H, DEMIR E, et al. Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries[J]. Materials Chemistry and Physics, 2018, 217: 254-261. |
107 | ZHOU S Y, TANG Z, PAN Z Y, et al. Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature[J]. SusMat, 2022, 2(3): 357-367. |
108 | LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): doi: 10.1002/aenm.201902852. |
109 | LI Y Q, ZHANG L Y, WANG X L, et al. Sodium-storage behavior of electron-rich element-doped amorphous carbon[J]. Applied Physics Reviews, 2021, 8(1): doi: 10.1063/5.0029686. |
[1] | Xiaoyu SHEN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Junfeg HAO, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2022 to Jan. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(3): 639-653. |
[2] | Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022) [J]. Energy Storage Science and Technology, 2023, 12(1): 1-15. |
[3] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[4] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[5] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[6] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[7] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[8] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[9] | Jianxin CHEN, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution [J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[13] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[14] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[15] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||