Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3731-3741.doi: 10.19799/j.cnki.2095-4239.2024.0511
• Energy Storage Materials and Devices • Next Articles
Cuihong ZENG1(), Xiujuan CHEN1, Man LI1, Wenji YIN1, Jiming PENG2(), Sijiang HU1, Youguo HUANG1, Hongqiang WANG1, Qingyu LI1
Received:
2024-06-06
Revised:
2024-07-07
Online:
2024-11-28
Published:
2024-11-27
Contact:
Jiming PENG
E-mail:zeng247375@163.com;pjming9912@163.com
CLC Number:
Cuihong ZENG, Xiujuan CHEN, Man LI, Wenji YIN, Jiming PENG, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3731-3741.
1 | SHOAIB M, THANGADURAI V. Exploring the anionic redox chemistry in cathode materials for high-energy-density sodium-ion batteries[J]. ACS Omega, 2022, 7(39): 34710-34717. DOI: 10.1021/acsomega.2c03883. |
2 | 郝定邦, 栗永利. 高倍率和长循环稳定性钠离子电池正极材料Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO的性能研究[J]. 储能科学与技术, 2024, 13(8): 2489-2498. DOI: 10.19799/j.cnki.2095-4239.2024.0215. |
HAO D B, LI Y L. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. DOI: 10.19799/j.cnki.2095-4239.2024.0215. | |
3 | 张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. DOI: 10.19799/j.cnki.2095-4239.2022.0413. |
ZHANG K, XU Y L. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. DOI: 10.19799/j.cnki.2095-4239.2022.0413. | |
4 | LIU Y H, ZHANG Y H, MA J, et al. Challenges and strategies toward practical application of layered transition metal oxide cathodes for sodium-ion batteries[J]. Chemistry of Materials, 2024, 36(1): 54-73. DOI: 10.1021/acs.chemmater.3c02115. |
5 | XIAO B W, LIU X, SONG M, et al. A general strategy for batch development of high-performance and cost-effective sodium layered cathodes[J]. Nano Energy, 2021, 89: 106371. DOI: 10.1016/j.nanoen.2021.106371. |
6 | LI C, GENG F, HU B, et al. Anionic redox in Na-based layered oxide cathodes: A review with focus on mechanism studies[J]. Materials Today Energy, 2020, 17: 100474. DOI: 10.1016/j.mtener.2020.100474. |
7 | HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2020, 577(7791): 502-508. DOI: 10.1038/s41586-019-1854-3. |
8 | ZHENG W, LIU Q, WANG Z Y, et al. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 28: 300-306. DOI: 10.1016/j.ensm.2020.03.016. |
9 | LI C, ZHAO C, HU B, et al. Unraveling the critical role of Ti substitution in P2-NaxLiyMn1– yO2 cathodes for highly reversible oxygen redox chemistry[J]. Chemistry of Materials, 2020, 32(3): 1054-1063. DOI: 10.1021/acs.chemmater.9b03765. |
10 | LI X L, MA C, ZHOU Y N. Transition metal vacancy in layered cathode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2023, 29(22): 2203586. DOI: 10.1002/chem. 202203586. |
11 | ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3: 373-386. DOI: 10.1038/s41560-018-0097-0. |
12 | YANG L F, LI X, LIU J, et al. Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(16): 6680-6689. DOI: 10.1021/jacs.9b01855. |
13 | BEN YAHIA M, VERGNET J, SAUBANÈRE M, et al. Unified picture of anionic redox in Li/Na-ion batteries[J]. Nature Materials, 2019, 18(5): 496-502. DOI: 10.1038/s41563-019-0318-3. |
14 | SONG J S, ZHU L Z, LI Y D, et al. W modification of nickel-rich ternary cathode material for efficient lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(1): 010523. DOI: 10.1149/1945-7111/acb0b9. |
15 | PIŞKIN B, UYGUR C S, AYDıNOL M K. Morphology effect on electrochemical properties of doped (W and Mo) 622NMC, 111NMC, and 226NMC cathode materials[J]. International Journal of Hydrogen Energy, 2020, 45(14): 7874-7880. DOI: 10.1016/j.ijhydene.2019.07.249. |
16 | ZHANG J N, LI Q H, LI Q, et al. Improved electrochemical performances of high voltage LiCoO2 with tungsten doping[J]. Chinese Physics B, 2018, 27(8): 088202. DOI: 10.1088/1674-1056/27/8/088202. |
17 | PAHARI D, PURAVANKARA S. On controlling the P2-O2 phase transition by optimal Ti-substitution on Ni- site in P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) cathode for Na-ion batteries[J]. Journal of Power Sources, 2020, 455: 227957. DOI: 10.1016/j.jpowsour.2020.227957. |
18 | QIAO Y, GUO S H, ZHU K, et al. Reversible anionic redox activity in Na3RuO4 cathodes: A prototype Na-rich layered oxide[J]. Energy & Environmental Science, 2018, 11(2): 299-305. DOI: 10.1039/C7EE03554C. |
19 | PENG B, SUN Z H, ZHAO L P, et al. Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V[J]. Energy Storage Materials, 2021, 35: 620-629. DOI: 10.1016/j.ensm.2020.11.037. |
20 | CHEN J, ZOU G Q, DENG W T, et al. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode[J]. Advanced Functional Materials, 2020, 30(46): 2004302. DOI: 10.1002/adfm.202004302. |
21 | LI Q Y, ZHOU D, ZHANG L J, et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy[J]. Advanced Functional Materials, 2019, 29(10): 1806706. DOI: 10.1002/adfm. 201806706. |
22 | LI Z H, ZHOU C, HUA J H, et al. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability[J]. Advanced Materials, 2020, 32(10): 1907444. DOI: 10.1002/adma.201907444. |
23 | RONG X H, XIAO D D, LI Q H, et al. Boosting reversible anionic redox reaction with Li/Cu dual honeycomb centers[J]. eScience, 2023, 3(5): 100159. DOI: 10.1016/j.esci.2023.100159. |
24 | SU G Q, LI L J, SHI Z, et al. Boosting anionic redox through lithium doping in P2-layered cathode for high-performance sodium-ion batteries[J]. Applied Surface Science, 2023, 608: 155097. DOI: 10.1016/j.apsusc.2022.155097. |
25 | KUMAR V K, GHOSH S, BISWAS S, et al. P2-type Na0.67Mn0.5Fe0.5O2 synthesized by solution combustion method as an efficient cathode material for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(3): 030512. DOI: 10.1149/1945-7111/abe985. |
26 | JIANG M D, QIAN G N, LIAO X Z, et al. Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling[J]. Journal of Energy Chemistry, 2022, 69: 16-25. DOI: 10.1016/j.jechem.2022.01.010. |
27 | ZHANG L Y, GUAN C H, XIE Y Y, et al. Heteroatom-substituted P2-Na2/3Ni1/4Mg1/12Mn2/3O2 cathode with{010}exposing facets boost anionic activity and high-rate performance for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18313-18323. DOI: 10.1021/acsami.1c24336. |
28 | WEN Y F, FAN J J, SHI C G, et al. Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-Type layered composite for sodium-ion batteries[J]. Nano Energy, 2019, 60: 162-170. DOI: 10.1016/j.nanoen.2019.02.074. |
[1] | Shirong TAN, Wenji YIN, Cuihong ZENG, Xiaoqiong LI, Shuo QI, Fangli JI, Sijiang HU, Hongqiang WANG, Qingyu LI. Role of high temperature quenching in structure and performance of Mn-based layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2399-2406. |
[2] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. |
[3] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[4] | Boyu LIU, Qing PANG, Tengfei WANG, Hongyu WANG. Advancements in the modification of high-voltage Ni-rich ternary cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3784-3795. |
[5] | Zeping FANG, Bao QIU, Zhaoping LIU. Progress of "reversible high-oxygen activity" of lithium-rich layered oxide anode materials [J]. Energy Storage Science and Technology, 2024, 13(1): 240-251. |
[6] | Ding ZHANG, Zixian YE, Zhenming LIU, Qun YI, Lijuan SHI, Huijuan GUO, Yi HUANG, Li WANG, Xiangming HE. Research progress of black phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490. |
[7] | Wenzhe HAN, Qingsong LAI, Xuanwen GAO, Wenbin LUO. Advances toward manganese-based layered oxide cathodes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1364-1379. |
[8] | Junpeng GUO, Qi SUN, Yuefang CHEN, Yuwen ZHAO, Huan YANG, Zhijia ZHANG. Preparation of three-dimensional multistage iron oxide/carbon nanofiber integrated electrode and sodium storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1469-1479. |
[9] | Ya′nan ZHOU, Weibo HUA, Dezhong ZHOU. Understanding the Na+ transport kinetics and phase transition mechanism of O3-NaNi0.4Fe0.2Mn0.4O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1011-1017. |
[10] | Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. |
[11] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[12] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[13] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[14] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||