1 |
ZHANG S X, KONG L C, LI Y, et al. Fundamentals of Li/CFx battery design and application[J]. Energy & Environmental Science, 2023, 16(5): 1907-1942. DOI: 10.1039/D2EE04179K.
|
2 |
ZHU H J, GAVRIL M, FENG L, et al. Li/CFx medical battery development[J]. ECS Transactions, 2008, 11(32): 11-17. DOI: 10.1149/1.2992489.
|
3 |
YANG W J, DAI Y, CAI S D, et al. Graphene/Au composite paper as flexible current collector to improve electrochemical performances of CFx cathode[J]. Journal of Power Sources, 2014, 255: 37-42. DOI: 10.1016/j.jpowsour.2013.12.122.
|
4 |
YAN K, ZOU Y, BAO L X, et al. Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery[J]. Rare Metals, 2024. DOI: 10.1007/s12598-024-02894-4.
|
5 |
ZHANG Q, D'ASTORG S, XIAO P, et al. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries[J]. Journal of Power Sources, 2010, 195(9): 2914-2917. DOI: 10.1016/j.jpowsour.2009.10.096.
|
6 |
LUO Z Y, LUO S, YANG M, et al. Revealing the mechano-electrochemical coupling behavior and discharge mechanism of fluorinated carbon cathodes toward high-power lithium primary batteries[J]. Small, 2024, 20(7): 2305980. DOI: 10.1002/smll.202305980.
|
7 |
GUÉRIN K, DUBOIS M, HOUDAYER A, et al. Applicative performances of fluorinated carbons through fluorination routes: A review[J]. Journal of Fluorine Chemistry, 2012, 134: 11-17. DOI: 10.1016/j.jfluchem.2011.06.013.
|
8 |
JIANG S B, HUANG P, LU J C, et al. The electrochemical performance of fluorinated ketjenblack as a cathode for lithium/fluorinated carbon batteries[J]. RSC Advances, 2021, 11(41): 25461-25470. DOI: 10.1039/d1ra03873g.
|
9 |
PENG C, LI Y, YAO F N, et al. Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries[J]. Carbon, 2019, 153: 783-791. DOI: 10.1016/j.carbon.2019.07.065.
|
10 |
KONG L C, LI Y, PENG C, et al. Defective nano-structure regulating C-F bond for lithium/fluorinated carbon batteries with dual high-performance[J]. Nano Energy, 2022, 104: 107905. DOI: 10.1016/j.nanoen.2022.107905.
|
11 |
LAM P, YAZAMI R. Physical characteristics and rate performance of (CFx)n (0.33<x<0.66) in lithium batteries[J]. Journal of Power Sources, 2006, 153(2): 354-359. DOI: 10.1016/j.jpowsour. 2005.05.022.
|
12 |
MA J, LIU Y F, PENG Y, et al. UV-radiation inducing strategy to tune fluorinated carbon bonds delivering the high-rate Li/CFx primary batteries[J]. Composites Part B: Engineering, 2022, 230: 109494. DOI: 10.1016/j.compositesb.2021.109494.
|
13 |
DAI Y, FANG Y, CAI S D, et al. Surface modified pinecone shaped hierarchical structure fluorinated mesocarbon microbeads for ultrafast discharge and improved electrochemical performances[J]. Journal of the Electrochemical Society, 2016, 164(2): A1-A7. DOI: 10.1149/2.0451614jes.
|
14 |
DAI Y, CAI S D, WU L J, et al. Surface modified CFx cathode material for ultrafast discharge and high energy density[J]. Journal of Materials Chemistry A, 2014, 2(48): 20896-20901. DOI: 10.1039/C4TA05492J.
|
15 |
YIN Y J, HOLOUBEK J, LIU A, et al. Ultralow-temperature Li/CFx batteries enabled by fast-transport and anion-pairing liquefied gas electrolytes[J]. Advanced Materials, 2023, 35(3): e2207932. DOI: 10.1002/adma.202207932.
|
16 |
WANG X X, SONG Z Y, WU H, et al. Anion donicity of liquid electrolytes for lithium carbon fluoride batteries[J]. Angewandte Chemie International Edition, 2022, 61(47): e202211623. DOI: 10.1002/anie.202211623.
|
17 |
YU J, WANG D, WANG G, et al. Breaking the electronic conductivity bottleneck of manganese oxide family for high-power fluorinated graphite composite cathode by ligand-field high-dimensional constraining strategy[J]. Advanced Materials, 2023, 35(8): 2209210.
|
18 |
LI L Y, WU R Z, MA H C, et al. Toward the high-performance lithium primary batteries by chemically modified fluorinate carbon with δ-MnO2[J]. Small, 2023, 19(26): 2300762. DOI: 10.1002/smll.202300762.
|
19 |
LI Y Y, WU X Z, LIU C, et al. Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: Effect of graphitization of carbon nanotubes[J]. Journal of Materials Chemistry A, 2019, 7(12): 7128-7137. DOI: 10.1039/c8ta12074a.
|
20 |
阳晓霞, 段征, 金晶龙, 等. 高比能氟化碳材料及Li/CFx电池的特性研究[J]. 电源技术, 2018, 42(8): 1161-1162, 1170. DOI: 10.3969/j.issn.1002-087X.2018.08.021.
|
|
YANG X X, DUAN Z, JIN J L, et al. Performance research of polycarbon mono-fluoride and Li/CFx cell[J]. Chinese Journal of Power Sources, 2018, 42(8): 1161-1162, 1170. DOI: 10.3969/j.issn.1002-087X.2018.08.021.
|
21 |
卢立丽, 王松蕊. 锂氟化碳电池放电热效应的模拟研究[J]. 电源技术, 2016, 40(5): 1098-1102. DOI: 10.3969/j.issn.1002-087X.2016.05.048.
|
|
LU L L, WANG S R. Studies on thermal effects during discharging of lithium carbon fluoride cells by simulation[J]. Chinese Journal of Power Sources, 2016, 40(5): 1098-1102. DOI: 10.3969/j.issn.1002-087X.2016.05.048.
|
22 |
LIU W, YAN T F, GUO R, et al. Analysis of electrochemical performance of lithium carbon fluorides primary batteries after storage[J]. Journal of Materiomics, 2021, 7(6): 1225-1232. DOI: 10.1016/j.jmat.2021.02.010.
|
23 |
ZHOU R X, LI Y, FENG Y Y, et al. The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries[J]. Composites Communications, 2020, 21: 100396. DOI: 10.1016/j.coco.2020.100396.
|
24 |
GONG P W, WANG Z F, WANG J Q, et al. One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage[J]. Journal of Materials Chemistry, 2012, 22(33): 16950-16956. DOI: 10.1039/C2JM32294C.
|
25 |
张红梅, 甘潦, 王开琼, 等. 纳米Ag改性方式对锂氟化碳电池性能的影响[J]. 电源技术, 2023, 47(9): 1164-1168. DOI: 10.3969/j.issn.1002-087X.2023.09.013.
|
|
ZHANG H M, GAN L, WANG K Q, et al. Effect of nano-Ag modification methods on performance of lithium fluoride carbon batteries[J]. Chinese Journal of Power Sources, 2023, 47(9): 1164-1168. DOI: 10.3969/j.issn.1002-087X.2023.09.013.
|
26 |
LIU W, MA S, LI Y, et al. Electrochemical impedance spectroscopy analysis for lithium carbon fluorides primary battery[J]. Journal of Energy Storage, 2023, 68: 107699. DOI: 10.1016/j.est.2023.107699.
|
27 |
ZHONG G M, CHEN H X, CHENG Y, et al. Insights into the lithiation mechanism of CFx by a joint high-resolution 19F NMR, in situ TEM and 7Li NMR approach[J]. Journal of Materials Chemistry A, 2019, 7(34): 19793-19799. DOI: 10.1039/C9TA06800G.
|
28 |
LI Q, XUE W R, SUN X R, et al. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries[J]. Energy Storage Materials, 2021, 38: 482-488. DOI: 10.1016/j.ensm.2021.03.024.
|
29 |
SROUT M, CARBONI M, GONZALEZ J A, et al. Insights into the importance of native passivation layer and interface reactivity of metallic lithium by electrochemical impedance spectroscopy[J]. Small, 2023, 19(7): 2206252. DOI: 10.1002/smll.202206252.
|