Energy Storage Science and Technology
Wei YANG1(), Zhiguo LI1, Caiting LAI1(), Ruirui ZHAO1, Yu LI2(), Yingke ZHOU3, Yiling HUANG4, Licai ZHU4, Wei FENG2, Wenlong WANG5, Zhongzhi YUAN4()
Received:
2024-09-30
Revised:
2024-10-14
Contact:
Caiting LAI, Yu LI, Zhongzhi YUAN
E-mail:085265@evebattery.com;Caitinglai1991@163.com;2022500016@buct.edu.cn;yuanzz@scnu.edu.cn
CLC Number:
Wei YANG, Zhiguo LI, Caiting LAI, Ruirui ZHAO, Yu LI, Yingke ZHOU, Yiling HUANG, Licai ZHU, Wei FENG, Wenlong WANG, Zhongzhi YUAN. Comparative study on self-discharge rate of new CFx lithium primary batteries and recommendations for their use[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0922.
Table 1
Physical and chemical properties of four CFx material samples"
材料 | F/C | 粒径/μm | 杂质元素含量/ppm | 振实密度 g/cm3 | 克容量 mAh/g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D10 | D50 | D90 | Dmax | Fe | Cu | Ni | Zn | Na | Mg | Cr | ||||
CF01 | 0.98 | 3.000 | 8.250 | 17.470 | 35.566 | 4.43 | ND | 6.068 | ND | 1.41 | 0.03 | 2.41 | 0.9517 | 849.66 |
CF02 | 0.94 | 2.265 | 5.946 | 12.735 | 25.178 | 80.81 | 0.217 | 84.69 | ND | 14.87 | ND | 9.313 | 0.9616 | 814.42 |
CF03 | 0.88 | 2.919 | 5.804 | 10.626 | 17.825 | 20.09 | 1.784 | 20.78 | 3.149 | ND | 0.263 | 4.611 | 0.7926 | 756.13 |
CF04 | 0.87 | 1.984 | 10.515 | 22.657 | 39.905 | 19.34 | 0.678 | 15.65 | 2.11 | ND | 0.225 | 1.694 | 1.0045 | 750.28 |
Table 3
XPS analysis of binding energy and surface element content of four CFx materials"
谱图 | C1s | 表面元素含量/% | |||||
---|---|---|---|---|---|---|---|
峰位置/eV | 284.73 | 287.17 | 289.10 | 290.00 | 291.92 | C | F |
键类型 | C1(C=C<) | C2(CF- | C3(F | C3(F | C4(F2 | ||
CF01 | 8.03 | 3.05 | 1.92 | 75.50 | 11.50 | 45.24 | 54.76 |
CF02 | 6.82 | 9.00 | 2.27 | 64.71 | 17.00 | 45.00 | 55.00 |
CF03 | 10.20 | 20.68 | 3.70 | 50.89 | 14.53 | 46.79 | 53.21 |
CF04 | 6.81 | 16.67 | 2.70 | 55.00 | 18.82 | 50.10 | 49.90 |
Table 5
Discharge capacity retention of Li/CFx batteries with different DODs after storage at 55 ℃"
电池 | 55℃存储/d | 放电倍率/C | 放电截止2V的容量保持率/% | |||
---|---|---|---|---|---|---|
0%DOD | 10%DOD | 30%DOD | 50%DOD | |||
Li/CF01 | 30d | 0.01C | 99.59 | 99.72 | 101.17 | 100.42 |
60d | 99.55 | 99.88 | 101.36 | 100.14 | ||
90d | 99.64 | 99.94 | 100.71 | 100.40 | ||
Li/CF02 | 30d | 0.01C | 99.41 | 100.10 | 100.21 | 100.78 |
60d | 99.44 | 99.59 | 99.47 | 99.35 | ||
90d | 99.52 | 99.62 | 99.83 | 99.27 | ||
Li/CF03 | 30d | 0.5C | 96.76 | 99.20 | 99.42 | 76.20 |
60d | 96.20 | 97.30 | 95.60 | 75.63 | ||
90d | 95.50 | 92.59 | 89.91 | 66.73 | ||
Li/CF04 | 30d | 0.5C | 98.63 | 98.47 | 97.86 | 98.23 |
60d | 98.67 | 98.18 | 97.02 | 97.92 | ||
90d | 98.35 | 96.95 | 96.65 | 94.71 |
1 | ZHANG S X, KONG L C, LI Y, et al. Fundamentals of Li/CFx battery design and application [J]. Energy & Environmental Science, 2023, 16(5): 1907-42. |
2 | ZHU H J, GAVRIL M, FENG L, et al. Li/CFx Medical Battery Development [J]. ECS Transactions, 2008, 11(32): 11-17. |
3 | YANG W, DAI Y, CAI S, et al. Graphene/Au composite paper as flexible current collector to improve electrochemical performances of CFx cathode [J]. Journal of Power Sources, 2014, 255: 37-42. |
4 | YAN K, ZOU Y, BAO L X, et al. Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery [J]. Rare Metals, 2024: 1-11. |
5 | ZHANG Q, D'ASTORG S, XIAO P, et al. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries [J]. Journal of Power Sources, 2010, 195(9): 2914-2917. |
6 | LUO Z, LUO S, YANG M, et al. Revealing the Mechano‐Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High‐Power Lithium Primary Batteries [J]. Small, 2023,2305980 (1-15). |
7 | GUéRIN K, DUBOIS M, HOUDAYER A, et al. Applicative performances of fluorinated carbons through fluorination routes: A review [J]. Journal of Fluorine Chemistry, 2012, 134: 11-17. |
8 | JIANG S, HUANG P, LU J, et al. The electrochemical performance of fluorinated ketjenblack as a cathode for lithium/fluorinated carbon batteries [J]. RSC Advances, 2021, 11(41): 25461-25470. |
9 | PENG C, LI Y, YAO F, et al. Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries [J]. Carbon, 2019, 153: 783-791. |
10 | KONG L, LI Y, PENG C, et al. Defective nano-structure regulating C-F bond for lithium/fluorinated carbon batteries with dual high-performance [J]. Nano Energy, 2022, 104: 107905. |
11 | LAM P, YAZAMI R. Physical characteristics and rate performance of (CFx)n (0.33<x<0.66) in lithium batteries [J]. Journal of Power Sources, 2006, 153(2): 354-359. |
12 | MA J, LIU Y, PENG Y, et al. UV-radiation inducing strategy to tune fluorinated carbon bonds delivering the high-rate Li/CFx primary batteries [J]. Composites Part B: Engineering, 2022, 230: 109494. |
13 | DAI Y, FANG Y, CAI S, et al. Surface Modified Pinecone Shaped Hierarchical Structure Fluorinated Mesocarbon Microbeads for Ultrafast Discharge and Improved Electrochemical Performances [J]. Journal of The Electrochemical Society, 2017, 164(2): A1-A7. |
14 | DAI Y, CAI S, WU L, et al. Surface modified CFx cathode material for ultrafast discharge and high energy density [J]. Journal of Materials Chemistry A, 2014, 2(48): 20896-20901. |
15 | YIN Y. Ultralow‐Temperature Li/CF x Batteries Enabled by Fast‐Transport and Anion‐Pairing Liquefied Gas Electrolytes [J]. Advanced materials (Weinheim), 35(3): 2207932. |
16 | WANG X, SONG Z, WU H, et al. Anion Donicity of Liquid Electrolytes for Lithium Carbon Fluoride Batteries [J]. Angewandte Chemie International Edition, 2022, 61(47): e202211623. |
17 | YU J, WANG D, WANG G X, et al. Breaking the Electronic Conductivity Bottleneck of Manganese Oxide Family for High-Power Fluorinated Graphite Composite Cathode by Ligand-Field High-Dimensional Constraining Strategy [J]. ADVANCED MATERIALS, 2023, 35(8): 2209210. |
18 | Li L, Wu R, Ma H, et al. Toward the High‐Performance Lithium Primary Batteries by Chemically Modified Fluorinate Carbon with δ‐MnO2[J]. Small, 2023, 19(26): 2300762. |
19 | LI Y, WU X, LIU C, et al. Fluorinated multi-walled carbon nanotubes as cathode materials of lithium and sodium primary batteries: effect of graphitization of carbon nanotubes [J]. Journal of Materials Chemistry A, 2019, 7(12): 7128-7137. |
20 | 阳晓霞, 段征, 金晶龙, et al. 高比能氟化碳材料及Li/CF_x电池的特性研究 [J]. 电源技术, 2018, 42(08): 1161-2+70. |
YANG X X, DUAN Z, JIN J L, et al. Performance research of polycarbon mono-fluride and Li/CFx cell [J]. Chinese Journal of Power Sources, 2018, 42(08): 1161-2+70. | |
21 | 卢立丽, 王松蕊. 锂氟化碳电池放电热效应的模拟研究 [J]. 电源技术, 2016, 40(05): 1098-1102. |
LU L L, WANG S R. Studies on thermal effects during discharging of lithium carbon fluoride cellsby simulation [J]. Chinese Journal of Power Sources, 2016, 40(05): 1098-1102. | |
22 | LIU W, YAN T F, GUO R, et al. Analysis of electrochemical performance of lithium carbon fluorides primary batteries after storage [J]. Journal of Materiomics, 2021, 7(6): 1225-1232. |
23 | ZHOU R, LI Y, FENG Y, et al. The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries [J]. Composites Communications, 2020, 21: 100396. |
24 | GONG P, WANG Z, WANG J, et al. One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage [J]. Journal of Materials Chemistry, 2012, 22(33): 16950-16956. |
25 | LUO Z, LUO S, YANG M, et al. Revealing the Mechano-Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High-Power Lithium Primary Batteries [J]. Small, 2024, 20(7): 2305980. |
26 | 张红梅, 甘潦, 王开琼, et al. 纳米Ag改性方式对锂氟化碳电池性能的影响 [J]. 电源技术, 2023, 47(09): 1164-1168. |
ZHANG H M, GAN L, WANG K Q, et al. Effect of nano-Ag modidication methods on performance of lithium fluride carbon batteries [J]. Chinese Journal of Power Sources, 2023, 47(09): 1164-1168. | |
27 | LIU W, MA S, LI Y, et al. Electrochemical impedance spectroscopy analysis for lithium carbon fluorides primary battery [J]. Journal of Energy Storage, 2023, 68: 107699. |
28 | ZHONG G M, CHEN H X, CHENG Y, et al. Insights into the lithiation mechanism of CFx by a joint high-resolution 19F NMR, in situTEM and 7Li NMR approach [J]. Journal of Materials Chemistry A, 2019, 7(34): 19793-19799. |
29 | LI Q, XUE W R, SUN X R, et al. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries [J]. Energy Storage Materials, 2021, 38: 482-488. |
30 | SROUT M, CARBONI M, GONZALEZ J-A, et al. Insights into the Importance of Native Passivation Layer and Interface Reactivity of Metallic Lithium by Electrochemical Impedance Spectroscopy [J]. Small, 2023, 19(7): 2206252. |
[1] | TONG Huan, ZHANG Bei. Development course and future direction of chemical power sources [J]. Energy Storage Science and Technology, 2018, 7(S1): 8-16. |
[2] | CHEN Yuqing1,2, ZHANG Hongzhang1,3, YU Ying1,2, QU Chao1, LI Xianfeng1,3, ZHANG Huamin1,3. The R&D status and prospects for primary lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 529-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||