Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1258-1269.doi: 10.19799/j.cnki.2095-4239.2024.1124
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Chaolong ZHANG1,2(), Yang CHEN1, Mengling LIU1, Yufeng ZHANG1, Guoqing HUA1, Panpan YIN1
Received:
2024-11-27
Revised:
2024-12-13
Online:
2025-03-28
Published:
2025-04-28
Contact:
Chaolong ZHANG
E-mail:zhangchaolong@126.com
CLC Number:
Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM[J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269.
Table 7
Evaluation of estimation results of different models"
电池编号 | 模型 | MAPE/% | RMSE | R2 |
---|---|---|---|---|
锂电池1 | CNN-LA-BiLSTM (无Huber) | 1.0516 | 0.0123 | 0.9490 |
CNN-BiLSTM (有Huber) | 1.0123 | 0.0101 | 0.9657 | |
CNN-LA-BiLSTM | 0.5794 | 0.0099 | 0.9961 | |
锂电池2 | CNN-LA-BiLSTM (无Huber) | 1.8806 | 0.0167 | 0.9766 |
CNN-BiLSTM (有Huber) | 1.7021 | 0.0136 | 0.9845 | |
CNN-LA-BiLSTM | 1.1265 | 0.0099 | 0.9933 |
Table 8
Evaluation of estimation results of different training set proportions"
电池编号 | 模型 | 训练、测试 样本比例 | MAPE/% | RMSE | R2 |
---|---|---|---|---|---|
锂电池1 | CNN-LA- BiLSTM | 50%∶50% | 0.5794 | 0.0099 | 0.9961 |
40%∶60% | 1.1358 | 0.0123 | 0.9638 | ||
30%∶70% | 1.5872 | 0.0152 | 0.9581 | ||
CNN-BiLSTM (有Huber) | 50%∶50% | 1.0123 | 0.0101 | 0.9657 | |
40%∶60% | 1.3141 | 0.0140 | 0.9537 | ||
30%∶70% | 2.3433 | 0.0215 | 0.9158 | ||
锂电池2 | CNN-LA- BiLSTM | 50%∶50% | 1.1265 | 0.0099 | 0.9933 |
40%∶60% | 1.3350 | 0.0111 | 0.9908 | ||
30%∶70% | 2.7230 | 0.0231 | 0.9641 | ||
CNN-BiLSTM (有Huber) | 50%∶50% | 1.7021 | 0.0136 | 0.9845 | |
40%∶60% | 1.8078 | 0.0165 | 0.9796 | ||
30%∶70% | 2.8895 | 0.0241 | 0.9606 |
Table 9
Evaluation of estimation results by different methods SOH and CNN-LA-BiLSTM"
结果评价 | 锂电池1 | 锂电池2 | ||||||
---|---|---|---|---|---|---|---|---|
MAPE/% | RMSE | R2 | 运行时间/s | MAPE/% | RMSE | R2 | 运行时间/s | |
GRU | 1.4607 | 1.3570 | 0.9382 | 0.37 | 4.1887 | 0.0330 | 0.9087 | 0.35 |
LSTM | 1.4511 | 1.2498 | 0.9475 | 0.71 | 3.3593 | 0.0281 | 0.9335 | 0.56 |
BiGRU | 1.4260 | 1.1492 | 0.9556 | 2.00 | 2.5719 | 0.0213 | 0.9619 | 1.71 |
BiLSTM | 1.2776 | 1.0881 | 0.9602 | 2.34 | 2.5148 | 0.0196 | 0.9677 | 1.70 |
CNN-BiLSTM | 1.1675 | 1.0843 | 0.9605 | 2.41 | 1.2051 | 0.0113 | 0.9893 | 1.81 |
CNN-LA-BiLSTM | 0.5794 | 0.0099 | 0.9961 | 2.64 | 1.1265 | 0.0099 | 0.9933 | 1.92 |
1 | 张朝龙, 赵筛筛, 何怡刚. 基于集成经验模态分解与集成机器学习的锂离子电池剩余使用寿命预测方法[J]. 电力系统保护与控制, 2023, 51(13): 177-186. DOI: 10.19783/j.cnki.pspc.221746. |
ZHANG C L, ZHAO S S, HE Y G. Remaining useful life prediction method for lithium-ion batteries based on ensemble empirical mode decomposition and ensemble machine learning[J]. Power System Protection and Control, 2023, 51(13): 177-186. DOI: 10.19783/j.cnki.pspc.221746. | |
2 | LIU W, PLACKE T, CHAU K T. Overview of batteries and battery management for electric vehicles[J]. Energy Reports, 2022, 8: 4058-4084. DOI:10.1016/j.egyr.2022.03.016. |
3 | LI J, ADEWUYI K, LOTFI N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation[J]. Applied Energy, 2018, 212: 1178-1190. DOI:10.1016/j.apenergy.2018.01.011. |
4 | YANG J F, CAI Y F, PAN C F, et al. A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition[J]. Applied Energy, 2019, 254: 113726. DOI:10.1016/j.apenergy.2019.113726. |
5 | CAI H C, HAO X, JIANG Y, et al. Degradation evaluation of lithium-ion batteries in plug-In hybrid electric vehicles: An empirical calibration[J]. Batteries, 2023, 9(6): 321. DOI:10.3390/batteries9060321. |
6 | WU J, MENG J H, LIN M Q, et al. Lithium-ion battery state of health estimation using a hybrid model with electrochemical impedance spectroscopy[J]. Reliability Engineering & System Safety, 2024, 252: 110450. DOI:10.1016/j.ress.2024.110450. |
7 | ZHANG M, YANG D F, DU J X, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms[J]. Energies, 2023, 16(7): 3167. DOI:10.3390/en16073167. |
8 | CHEN J Y, CHEN D W, HAN X L, et al. State-of-health estimation of lithium-ion battery based on constant voltage charging duration[J]. Batteries, 2023, 9(12): 565. DOI:10.3390/batteries9120565. |
9 | YANG J F, CAI Y F, MI C C. State-of-health estimation for lithium-ion batteries based on decoupled dynamic characteristic of constant-voltage charging current[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2070-2079. DOI:10.1109/TTE.2021.3125932. |
10 | ZHANG C L, ZHAO S S, YANG Z, et al. A reliable data-driven state-of-health estimation model for lithium-ion batteries in electric vehicles[J]. Frontiers in Energy Research, 2022, 10: 1013800. DOI:10.3389/fenrg.2022.1013800. |
11 | 刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694. DOI: 10.19799/j.cnki.2095-4239.2020.0382. |
LIU W X, TIAN X, XIAO J Y, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. DOI: 10.19799/j.cnki.2095-4239.2020.0382. | |
12 | 李放, 闵永军, 王琛, 等. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, 11(10): 3316-3327. DOI: 10.19799/j.cnki.2095-4239.2022.0165. |
LI F, MIN Y J, WANG C, et al. State of health estimation and remaining useful life predication of lithium batteries using charging process[J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. DOI: 10.19799/j.cnki.2095-4239.2022.0165. | |
13 | ZHANG J A, WANG P, GONG Q R, et al. SOH estimation of lithium-ion batteries based on least squares support vector machine error compensation model[J]. Journal of Power Electronics, 2021, 21(11): 1712-1723. DOI:10.1007/s43236-021-00307-8. |
14 | CHEN K, LI J L, LIU K, et al. State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine[J]. Green Energy and Intelligent Transportation, 2024, 3(1): 100151. DOI:10.1016/j.geits. 2024.100151. |
15 | ZHANG C L, LUO L J, YANG Z, et al. Battery SOH estimation method based on gradual decreasing current, double correlation analysis and GRU[J]. Green Energy and Intelligent Transportation, 2023, 2(5): 100108. DOI:10.1016/j.geits.2023.100108. |
16 | GU X Y, SEE K W, LI P H, et al. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model[J]. Energy, 2023, 262: 125501. DOI:10.1016/j.energy.2022.125501. |
17 | 张朝龙, 赵筛筛, 何怡刚. 基于信息熵与PSO-LSTM的锂电池组健康状态估计方法[J]. 机械工程学报, 2022, 58(10): 180-190. DOI: 10.3901/JME.2022.10.180. |
ZHANG C L, ZHAO S S, HE Y G. State-of-health estimate for lithium-ion battery using information entropy and PSO-LSTM[J]. Journal of Mechanical Engineering, 2022, 58(10): 180-190. DOI: 10.3901/JME.2022.10.180. | |
18 | HOU W H, LU Y, OU Y, et al. Recent advances in electrolytes for high-voltage cathodes of lithium-ion batteries[J]. Transactions of Tianjin University, 2023, 29(2): 120-135. DOI:10.1007/s12209-023-00355-0. |
[1] | Tao YE, Yijun WANG, Zilong TANG, Guoliang PAN. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid [J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. |
[2] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
[3] | Shuangming DUAN, Tengfei LV, Junhui LI, Zhiqiang ZHAO, Haojun LIU, Yuyi ZHENG. Life cycle benefit evaluation of shared energy storage based on improved TOPSIS-ANP-CRITIC [J]. Energy Storage Science and Technology, 2025, 14(3): 1210-1223. |
[4] | Lei WANG, Shaomian LIU, Fenglan FAN, Ziteng YANG. Structure-activity relationships of fast-growing wood based hard carbon anodes for sodium ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1107-1114. |
[5] | Xinran LI, Xuehui ZHANG, Xin ZHOU, Dingzhang GUO, Jixiang CHEN, Yuchao XIE, Haisheng CHEN. Research progress on intake filtration system of compressor [J]. Energy Storage Science and Technology, 2025, 14(3): 1054-1069. |
[6] | Shaojia DANG, Liqiang SUN, Shenyou WANG, Wentao TIAN, Pengfei HU. A dual-layer power optimization strategy for multi-energy storage power station considering system economic efficiency and state of charge balance [J]. Energy Storage Science and Technology, 2025, 14(3): 1247-1257. |
[7] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[8] | Cheng YUAN, Qian SHEN, Ruiwen ZHANG, Shiming ZHANG. Rapid microwave synthesis of platinum-copper alloy as efficient oxygen reduction electrocatalyst [J]. Energy Storage Science and Technology, 2025, 14(3): 1133-1140. |
[9] | Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG, Gaoyun WU, Zufan WANG, Haisen ZHAO. Energy efficiency analysis model and experimental verification of vertical gravity energy storage system based on belt drive [J]. Energy Storage Science and Technology, 2025, 14(3): 1141-1149. |
[10] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[11] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
[12] | Gongxun LU, Huadong YUAN, Jianmin LUO, Yao WANG, Yujing LIU, Peng SHI, Shihui ZOU, Guangmin ZHOU, Xinyong TAO, Jianwei NAI. Surface pre-treatment strategies for lithium metal: Advancement and perspective [J]. Energy Storage Science and Technology, 2025, 14(3): 947-964. |
[13] | Yida LIU, Li ZHAO, Ruihua CHEN, Bin ZHANG. Industrial application dimensions and formal configuration of the integration of energy storage and digital technology [J]. Energy Storage Science and Technology, 2025, 14(3): 1070-1086. |
[14] | Xi WANG, Yufei TENG, Peng SHI, Weixuan ZHANG, Baorui CHEN, Jiayu BAI, Xinwei DU, Jing GOU, Pengfei HU. A hybrid islanding detection method based on the Lissajous Pattern and impedance for grid-forming energy storage inverter [J]. Energy Storage Science and Technology, 2025, 14(3): 1299-1309. |
[15] | Xiaolong SUN, Haiting GONG, Zhen CHEN, Zhen WANG, Rong HUANG, Xianglei LIU. Synergistic enhancement of heat and mass transfer and heat storage characteristics in calcium-based thermochemical heat storage reactors [J]. Energy Storage Science and Technology, 2025, 14(3): 1198-1209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||