Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1123-1132.doi: 10.19799/j.cnki.2095-4239.2024.1120
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Huiming CHEN1(), Yijia CAI2, Wenji YIN2, Meifeng CHEN1, Youguo HUANG2, Sijiang HU2(
), Hongqiang WANG2, Qingyu LI2
Received:
2024-11-27
Revised:
2024-12-27
Online:
2025-03-28
Published:
2025-04-28
Contact:
Sijiang HU
E-mail:chhm19860311@163.com;sjhu@gxnu.edu.cn
CLC Number:
Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials[J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132.
Fig.5
Electrochemical performance studies of all samples in a voltage range of 2—4.8 V (a) galvanostatic charge and discharge profiles of the initial cycle at 0.1 C, (b) cycle stability at 1 C, Differential Capacity Curves of (c) LLO and (d) LLO-CM1, (e) rate capability, (f) GITT curves of LLO and LLO-CM1"
1 | KO G, JEONG S, PARK S, et al. Doping strategies for enhancing the performance of lithium nickel manganese cobalt oxide cathode materials in lithium-ion batteries[J]. Energy Storage Materials, 2023, 60: 102840. DOI:10.1016/j.ensm.2023.102840. |
2 | FAN Y M, ZHANG W C, ZHAO Y L, et al. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure[J]. Energy Storage Materials, 2021, 40: 51-71. DOI:10.1016/j.ensm. 2021.05.005. |
3 | LI Q Y, NING D, WONG D, et al. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy[J]. Nature Communications, 2022, 13(1): 1123. DOI:10.1038/s41467-022-28793-9. |
4 | TANG W H, ZHU J P, CHEN C, et al. Modification strategies and challenges of high-performance lithium-rich manganese-based cathode materials[J]. Energy Technology, 2024, 12(4): 2301254. DOI:10.1002/ente.202301254. |
5 | YANG P H, ZHANG S C, WEI Z W, et al. A gradient doping strategy toward superior electrochemical performance for Li-rich Mn-based cathode materials[J]. Small, 2023, 19(20): 2207797. DOI:10.1002/smll.202207797. |
6 | ZE P F, BAO Q, ZHAO P L. Progress of "reversible high-oxygen activity" of lithium-rich layered oxide anode materials[J]. Energy Storage Science and Technology, 2024, 13(1):240-251. |
7 | CELESTE A, GIRARDI F, GIGLI L, et al. Impact of Overlithiation and Al doping on the battery performance of Li-rich layered oxide materials[J]. Electrochimica Acta, 2022, 428: 140737. DOI:10. 1016/j.electacta.2022.140737. |
8 | LIN Y, LI Y, TANG M L, et al. A review of high-capacity lithium-rich manganese-based cathode materials for a new generation of lithium batteries[J]. Inorganica Chimica Acta, 2024, 572: 122239. DOI:10.1016/j.ica.2024.122239. |
9 | LAISA C P, RAMESHA R N, RAMESHA K. Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ substitution[J]. Electrochimica Acta, 2017, 256: 10-18. DOI:10.1016/j.electacta.2017.10.029. |
10 | DONG S D, ZHOU Y, HAI C X, et al. Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials[J]. Journal of Power Sources, 2020, 462: 228185. DOI:10.1016/j.jpowsour. 2020.228185. |
11 | ZHANG Z H, DING X K, LUO D, et al. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials[J]. Energy Storage Science and Technology, 2021, 10(2):408-424. |
12 | QIU H R, ZHANG R, ZHANG Y X. Na+ lattice doping induces oxygen vacancies to achieve high capacity and mitigate voltage decay of Li-rich cathodes[J]. International Journal of Molecular Sciences, 2023, 24(9): 8035. DOI:10.3390/ijms24098035. |
13 | CHOI A, LIM J, KIM H, et al. In situ electrochemical Zn2+-doping for Mn-rich layered oxides in Li-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(5): 3427-3434. DOI:10.1021/acsaem. 9b00241. |
14 | MAKHONINA E, PECHEN L, MEDVEDEVA A, et al. Effects of Mg doping at different positions in Li-rich Mn-based cathode material on electrochemical performance[J]. Nanomaterials, 2022, 12(1): 156. DOI:10.3390/nano12010156. |
15 | SEABY T, LIN T E, HU Y X, et al. An analysis of F-doping in Li-rich cathodes[J]. Rare Metals, 2022, 41(6): 1771-1796. DOI:10.1007/s12598-021-01883-1. |
16 | WANG E R, XIAO D D, WU T H, et al. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides[J]. Advanced Functional Materials, 2022, 32(26): 2201744. DOI:10.1002/adfm. 202201744. |
17 | RAMESHA R N, LAISA C P, RAMESHA K. Improving electrochemical stability by transition metal cation doping for manganese in lithium-rich layered cathode, Li1.2Ni0.13Co0.13Mn0.54- xMxO2 (M=Co, Cr and Fe)[J]. Electrochimica Acta, 2017, 249: 377-386. DOI:10.1016/j.electacta. 2017.08.039. |
18 | HE Z J, WANG Z X, CHENG L, et al. Structural and electrochemical characterization of layered 0.3Li2MnO3·0.7LiMn0.35 -x/3Ni0.5- x/3Co0.15- x/3CrxO2 cathode synthesized by spray drying[J]. Advanced Powder Technology, 2014, 25(2): 647-653. DOI:10.1016/j.apt. 2013.10.008. |
19 | YUAN X L, XU Q J, LIU X N, et al. Excellent rate performance and high capacity of Mo doped layered cathode material Li [Li0.2Mn0.54Ni0.13Co0.13] O2 derived from an improved coprecipitation approach[J]. Electrochimica Acta, 2016, 207: 120-129. DOI:10. 1016/j.electacta.2016.04.180. |
20 | YU H J, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5): 2907-2915. DOI:10.1021/acs.nanolett.5b03933. |
21 | AN J, SHI L Y, CHEN G R, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744. DOI:10.1039/c7ta05971j. |
22 | MA Q X, YANG M Q, MENG J X, et al. Interfacial-engineering-enabled high-performance Li-rich cathodes[J]. Chemical Engineering Journal, 2024, 485: 149546. DOI:10.1016/j.cej. 2024.149546. |
23 | LU Y, SHI S L, YANG F, et al. Mo-doping for improving the ZrF4 coated-Li[Li0.20Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 767: 23-33. DOI:10.1016/j.jallcom. 2018. 07.068. |
24 | YU Z Z, LU Q, WANG Y Z, et al. Self-compacting engineering to achieve high-performance lithium-rich layered oxides cathode materials[J]. Applied Surface Science, 2023, 619: 156683. DOI:10.1016/j.apsusc.2023.156683. |
25 | FANG Y Y, SU Y F, DONG J Y, et al. Boosting rate performance of layered lithium-rich cathode materials by oxygen vacancy induced surface multicomponent integration[J]. Journal of Energy Chemistry, 2024, 92: 250-262. DOI:10.1016/j.jechem. 2023. 12.050. |
26 | LI Q Y, ZHOU D, ZHANG L J, et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy[J]. Advanced Functional Materials, 2019, 29(10): 1806706. DOI:10.1002/adfm.201806706. |
27 | WEN Z Y, RONG Z W, YIN Y J, et al. N-doped carbon coated SnO2 nanospheres as Li-ion battery anode with high capacity and good cycling stability[J]. Journal of Electroanalytical Chemistry, 2021, 899: 115694. DOI:10.1016/j.jelechem.2021.115694. |
28 | ZHANG J, LEI Z H, WANG J L, et al. Surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(29): 15821-15829. DOI:10.1021/acsami.5b02937. |
29 | WANG B, CUI J, LI Z J, et al. Review on comprehending and enhancing the initial coulombic efficiency of Li-rich Mn-based cathode materials in lithium-ion batteries[J]. Materials Chemistry Frontiers, 2023, 7(13): 2570-2594. DOI:10.1039/D3QM00064H. |
[1] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
[2] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[3] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[4] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[5] | Deqing ZHOU, Yijia CAI, Ziqin ZHANG, Liping ZHOU, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Electrochemical properties of spinel MoS2 coated lithium-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1087-1096. |
[6] | Boyu LIU, Tengfei WANG, Qing PANG, Kaiyu CHEN, Hongyu WANG. Preparation and electrochemical performance of Mg-Cr co-doped LiNi0.5Mn1.5O4 cathode material [J]. Energy Storage Science and Technology, 2025, 14(3): 1097-1106. |
[7] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
[8] | Hairui WANG, Changyu XU, Guifu ZHU, Xiaojian HOU. A parallel multi cale-featured fusion model for state-of-health estimation of lithium-ion batteries based on relaxation voltage [J]. Energy Storage Science and Technology, 2025, 14(2): 799-811. |
[9] | Zhiwei KUANG, Zhendong ZHANG, Lei SHENG, Linxiang FU. Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage [J]. Energy Storage Science and Technology, 2025, 14(2): 791-798. |
[10] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
[11] | Yuanxiu XING, Zhuanwei LIU, Yufeng XING, Wenbo WANG. BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 370-379. |
[12] | Shifeng YE, Chaofeng HONG, Xiao QI, Weixiong WU, Zijian TAN, Qi ZHOU, Zhaoyang ZHANG. Lithium-ion batteries surface temperature prediction toward EEMD-GRU-NN method [J]. Energy Storage Science and Technology, 2025, 14(1): 380-387. |
[13] | Ke LI, Shunbing ZHU, Zhige TAO, He WANG. Fire suppression experiment of lithium iron phosphate battery with composite water extinguishing agent [J]. Energy Storage Science and Technology, 2025, 14(1): 140-151. |
[14] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[15] | Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model [J]. Energy Storage Science and Technology, 2025, 14(1): 331-345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||