Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 799-811.doi: 10.19799/j.cnki.2095-4239.2024.0808
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Hairui WANG1(), Changyu XU1, Guifu ZHU2(
), Xiaojian HOU1
Received:
2024-08-31
Revised:
2024-11-05
Online:
2025-02-28
Published:
2025-03-18
Contact:
Guifu ZHU
E-mail:1035248443@qq.com;zhuguifu@kust.edu.cn
CLC Number:
Hairui WANG, Changyu XU, Guifu ZHU, Xiaojian HOU. A parallel multi cale-featured fusion model for state-of-health estimation of lithium-ion batteries based on relaxation voltage[J]. Energy Storage Science and Technology, 2025, 14(2): 799-811.
Table 5
Hyperparameter settings table"
CNN-BOA | LSTM | Transformer | MSFFCM-XGB |
---|---|---|---|
Learning rate:0.0001 | Learning rate:2×10-3 | Feature_size:14 | Learning rate:0.08 |
Layer:4 | Layer:2 | Num_heads:2 | Max_depth:10 |
Dropout:0.001 | N_hidden:32 | Num_layer:2 | N_estimators:225 |
Batch size:448 | Batch size:448 | Dropout:0.1 | Alphas:0.18 |
N_epochs:150 | N_epochs:200 | N_epochs:140 | Subsample:0.94 |
1 | 尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890. |
YIN J, LIU B, SUN G B, et al. Transfer learning denoising autoencoder-long short term memory for remaining useful life prediction of Li-ion batteries[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890. | |
2 | 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. DOI: 10.19595/j.cnki.1000-6753.tces.210860. |
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. DOI: 10.19595/j.cnki.1000-6753.tces.210860. | |
3 | 李英顺, 阚宏达, 郭占男, 等. 基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210. |
LI Y S, KAN H D, GUO Z N, et al. Prediction of remaining useful life of lithium-ion battery based on data preprocessing and VMD-LSTM-GPR[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210. | |
4 | FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101741. DOI:10.1016/j.est.2020.101741. |
5 | TANG A H, HUANG Y K, XU Y C, et al. Data-physics-driven estimation of battery state of charge and capacity[J]. Energy, 2024, 294: 130776. DOI:10.1016/j.energy.2024.130776. |
6 | SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI:10.1016/j.apenergy.2021.117346. |
7 | REN Z, DU C Q. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries[J]. Energy Reports, 2023, 9: 2993-3021. DOI:10.1016/j.egyr.2023.01.108. |
8 | VILSEN S B, STROE D I. Battery state-of-health modelling by multiple linear regression[J]. Journal of Cleaner Production, 2021, 290: 125700. DOI:10.1016/j.jclepro.2020.125700. |
9 | SUI X, HE S, MENG J H, et al. Fuzzy entropy-based state of health estimation for Li-ion batteries[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 5125-5137. DOI:10.1109/JESTPE.2020.3047004. |
10 | LIN M Q, WU D G, MENG J H, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. Journal of Power Sources, 2022, 518: 230774. DOI:10.1016/j.jpowsour.2021.230774. |
11 | TAO J, WANG S, CAO W, et al. A comprehensive review of multiple physical and data-driven model fusion methods for accurate lithium-ion battery inner state factor estimation[J]. Batteries, 2024, 10(12): 442. |
12 | HU X S, CHE Y H, LIN X K, et al. Health prognosis for electric vehicle battery packs: A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2622-2632. DOI:10.1109/TMECH.2020.2986364. |
13 | WU J, LIU X T, MENG J H, et al. Cloud-to-edge based state of health estimation method for Lithium-ion battery in distributed energy storage system[J]. Journal of Energy Storage, 2021, 41: 102974. DOI:10.1016/j.est.2021.102974. |
14 | MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. DOI:10.1016/j.energy.2022.123973. |
15 | TANG A, JIANG Y, YU Q, et al. A hybrid neural network model with attention mechanism for state of health estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2023, 68: 107734. |
16 | HU J, WENG L L, GAO Z W, et al. State of health estimation and remaining useful life prediction of electric vehicles based on real-world driving and charging data[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 382-394. DOI:10.1109/TVT.2022.3203013. |
17 | ZHOU K Q, QIN Y, YUEN C. Transfer-learning-based state-of-health estimation for lithium-ion battery with cycle synchronization[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 692-702. DOI:10.1109/TMECH.2022.3201010. |
18 | SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: 100817. DOI:10.1016/j.est.2019.100817. |
19 | YANG N K, SONG Z Y, HOFMANN H, et al. Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest[J]. Journal of Energy Storage, 2022, 48: 103857. DOI:10.1016/j.est.2021.103857. |
20 | WANG S L, TAKYI-ANINAKWA P, JIN S Y, et al. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation[J]. Energy, 2022, 254: 124224. DOI:10.1016/j.energy.2022.124224. |
21 | WANG S L, GAO H Y, TAKYI-ANINAKWA P, et al. Improved multiple feature-electrochemical thermal coupling modeling of lithium-ion batteries at low-temperature with real-time coefficient correction[J]. Protection and Control of Modern Power Systems, 2024, 9(3): 157-173. DOI:10.23919/PCMP.2023.000257. |
22 | SHEN S Q, LIU B C, ZHANG K, et al. Toward fast and accurate SOH prediction for lithium-ion batteries[J]. IEEE Transactions on Energy Conversion, 2021, 36(3): 2036-2046. DOI:10.1109/TEC.2021.3052504. |
23 | SU L Z, XU Y, DONG Z Y. State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack levels[J]. Energy Conversion and Economics, 2024, 5(4): 224-242. DOI:10.1049/enc2.12125. |
24 | ZHANG M, YIN J, CHEN W L. SOH estimation and RUL prediction of lithium batteries based on multidomain feature fusion and CatBoost model[J]. Energy Science & Engineering, 2023, 11(9): 3082-3101. DOI:10.1002/ese3.1506. |
25 | HUANG H Y, MENG J H, WANG Y H, et al. A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve[J]. Applied Energy, 2022, 322: 119469. DOI:10.1016/j.apenergy.2022.119469. |
26 | SHU X, SHEN J W, LI G, et al. A flexible state-of-health prediction scheme for lithium-ion battery packs with long short-term memory network and transfer learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2238-2248. DOI:10.1109/TTE.2021.3074638. |
27 | ZHU J G, WANG Y X, HUANG Y, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1): 2261. DOI:10.1038/s41467-022-29837-w. |
28 | ZHU X F, WANG W, ZOU G P, et al. State of health estimation of lithium-ion battery by removing model redundancy through aging mechanism[J]. Journal of Energy Storage, 2022, 52: 105018. DOI:10.1016/j.est.2022.105018. |
29 | YANG J F, XIA B, HUANG W X, et al. Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212: 1589-1600. DOI:10.1016/j.apenergy.2018.01.010. |
30 | ZHANG S W, ZHU H P, WU J, et al. Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning[J]. Journal of Energy Storage, 2023, 73: 108579. DOI:10.1016/j.est. 2023.108579. |
31 | ZHAO G X, SUN X, XU J J, et al. MUSE: Parallel multi-scale attention for sequence to sequence learning[EB/OL]. 2019: 1911.09483. https://arxiv.org/abs/1911.09483v1 |
[1] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
[2] | Zhiwei KUANG, Zhendong ZHANG, Lei SHENG, Linxiang FU. Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage [J]. Energy Storage Science and Technology, 2025, 14(2): 791-798. |
[3] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
[4] | Yuanxiu XING, Zhuanwei LIU, Yufeng XING, Wenbo WANG. BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 370-379. |
[5] | Shifeng YE, Chaofeng HONG, Xiao QI, Weixiong WU, Zijian TAN, Qi ZHOU, Zhaoyang ZHANG. Lithium-ion batteries surface temperature prediction toward EEMD-GRU-NN method [J]. Energy Storage Science and Technology, 2025, 14(1): 380-387. |
[6] | Ke LI, Shunbing ZHU, Zhige TAO, He WANG. Fire suppression experiment of lithium iron phosphate battery with composite water extinguishing agent [J]. Energy Storage Science and Technology, 2025, 14(1): 140-151. |
[7] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[8] | Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model [J]. Energy Storage Science and Technology, 2025, 14(1): 331-345. |
[9] | Zheng CHEN, Yue PENG, Jingyuan HU, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. Lithium battery capacity prediction based on short-term charging data and an enhanced whale optimization algorithm [J]. Energy Storage Science and Technology, 2025, 14(1): 319-330. |
[10] | Yingying LIU, Xiaoyuan ZHANG, Mengnan LIU, junzhang SUN, Yan ZHANG. State of health interval estimation for lithium battery via Gaussian process regression with adaptive optimal combination Kernel function [J]. Energy Storage Science and Technology, 2025, 14(1): 346-357. |
[11] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[12] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[13] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[14] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[15] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||