Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 2972-2982.doi: 10.19799/j.cnki.2095-4239.2024.0289
Previous Articles Next Articles
Jizhong LU1(), Simin PENG2(), Xiaoyu LI3
Received:
2024-04-01
Revised:
2024-04-11
Online:
2024-09-28
Published:
2024-09-20
Contact:
Simin PENG
E-mail:120322268@qq.com;psmsteven@163.com
CLC Number:
Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model[J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982.
Table 3
Prediction errors of the combined HFs after 88 cycles in three battery groups"
电池 | 特征 | MAE/% | MAPE/% | RMSE/% |
---|---|---|---|---|
B0005 | HF5 | 0.2184 | 1.1698 | 0.3386 |
HF1 | 0.5214 | 1.7601 | 0.6033 | |
HF3 | 0.6072 | 1.9265 | 0.7928 | |
B0006 | HF3 | 0.4523 | 2.2077 | 0.6111 |
HF1 | 0.3546 | 2.2734 | 0.6049 | |
HF5 | 0.4164 | 1.4824 | 0.8212 | |
B0007 | HF1 | 0.2247 | 0.8649 | 0.4459 |
HF3 | 0.3771 | 1.1927 | 0.4801 | |
HF5 | 0.4371 | 1.7686 | 0.5080 |
Table 4
SOH estimation errors in 80th, 100th, and 120th cycles of the separation points"
电池 | 预测起点 | MAE/% | MAPE/% | RMSE/% |
---|---|---|---|---|
B0005 | 80 | 0.5621 | 0.7936 | 0. 8677 |
100 | 0.3826 | 0.5609 | 0.4585 | |
120 | 0.3246 | 0.4868 | 0. 3638 | |
B0006 | 80 | 0. 9228 | 1.3509 | 1.1205 |
100 | 0.6338 | 0.9663 | 0.7988 | |
120 | 0.6220 | 0.9928 | 0.8434 | |
B0007 | 80 | 0.4201 | 0.5475 | 0.7471 |
100 | 0.3868 | 0.5277 | 0.5044 | |
120 | 0.3526 | 0.4851 | 0.4395 |
Table 5
Estimation error and computational burden of different models"
电池 | 模型 | MAE/% | MAPE/% | RMSE/% | 计算耗时/s |
---|---|---|---|---|---|
B0005 | RBF | 0.8735 | 1.8355 | 1.3354 | 2.87 |
SVM | 0.6938 | 1.0219 | 0.7567 | 2.45 | |
LSTM | 0.5733 | 0.8433 | 0.6317 | 12.78 | |
本文模型 | 0.3826 | 0.5609 | 0.4585 | 4.30 | |
B0006 | RBF | 1.0926 | 1.5557 | 1.2837 | 2.93 |
SVM | 1.2394 | 1.9945 | 1.6654 | 2.52 | |
LSTM | 0.7645 | 1.1567 | 0.9451 | 13.67 | |
本文模型 | 0.6338 | 0.9663 | 0.7988 | 4.41 | |
B0007 | RBF | 0.7312 | 1.0245 | 0.8934 | 3.17 |
SVM | 0.7155 | 0.9761 | 0.8099 | 2.98 | |
LSTM | 0.6477 | 0.8829 | 0.7364 | 13.04 | |
本文模型 | 0.3868 | 0.5277 | 0.5044 | 4.24 |
1 | YU Q Q, NIE Y W, PENG S M, et al. Evaluation of the safety standards system of power batteries for electric vehicles in China[J]. Applied Energy, 2023, 349: 121674. DOI: 10.1016/j.apenergy. 2023.121674. |
2 | 李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994. DOI: 10.19799/j.cnki.2095-4239.2023.0316. |
LI F, MIN Y J, ZHANG Y. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. DOI: 10.19799/j.cnki.2095-4239.2023.0316. | |
3 | LIN C P, XU J, HOU J Y, et al. A fast data-driven battery capacity estimation method under non-constant current charging and variable temperature[J]. Energy Storage Materials, 2023, 63: 102967. DOI: 10.1016/j.ensm.2023.102967. |
4 | 戴国洪, 张道涵, 彭思敏, 等. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408. |
DAI G H, ZHANG D H, PENG S M, et al. Overview of artificial intelligence in health prediction of power battery[J]. Journal of Mechanical Engineering, 2024, 60(4): 391-408. | |
5 | HUANG H Y, MENG J H, WANG Y H, et al. A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve[J]. Applied Energy, 2022, 322: 119469. DOI: 10.1016/j.apenergy.2022.119469. |
6 | HOU J Y, XU J, LIN C P, et al. State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method[J]. Energy, 2024, 290: 130056. DOI: 10.1016/j.energy.2023.130056. |
7 | SHAH A, SHAH K, SHAH C, et al. State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review[J]. Renewable Energy Focus, 2022, 42: 146-164. DOI: 10.1016/j.ref.2022.06.001. |
8 | 熊庆, 邸振国, 汲胜昌. 锂离子电池健康状态估计及寿命预测研究进展综述[J]. 高电压技术, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843. |
XIONG Q, DI Z G, JI S C. Review on health state estimation and life prediction of lithium-ion batteries[J]. High Voltage Engineering, 2024, 50(3): 1182-1195. DOI: 10.13336/j.1003-6520.hve.20221843. | |
9 | 陈清炀, 何映晖, 余官定, 等. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. DOI: 10.19799/j.cnki.2095-4239.2022.0508. |
CHEN Q Y, HE Y H, YU G D, et al. Integrating model-and data-driven methods for accurate state estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. DOI: 10.19799/j.cnki.2095-4239.2022.0508. | |
10 | MAO L, HU H Z, CHEN J J, et al. Online state-of-health estimation method for lithium-ion battery based on CEEMDAN for feature analysis and RBF neural network[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 187-200. DOI: 10.1109/JESTPE.2021.3106708. |
11 | ZHANG C L, LUO L J, YANG Z, et al. Battery SOH estimation method based on gradual decreasing current, double correlation analysis and GRU[J]. Green Energy and Intelligent Transportation, 2023, 2(5): 100108. DOI: 10.1016/j.geits.2023.100108. |
12 | YANG J F, CAI Y F, MI C. Lithium-ion battery capacity estimation based on battery surface temperature change under constant-current charge scenario[J]. Energy, 2022, 241: 122879. DOI: 10.1016/j.energy.2021.122879. |
13 | 李乐卿,王鹏,孙万洲等.基于锂离子电池容量增量曲线半峰面积的容量在线估计方法[J/OL].电工技术学报,1-9[2024-02-11]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231248. |
LI L Q, WANG P, SUN W Z, et al. Online capacity estimation method based on half-peak area of capacity increment curve of lithium-ion battery [J/OL]. Transactions of China Electrotechnical Society,1-9[2024-02-11]. https://doi.org/10.19595/j.cnki.1000-6753.tces.231248. | |
14 | MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. DOI: 10.1016/j.energy.2022.123973. |
15 | WU J, CUI X C, MENG J H, et al. Data-driven transfer-stacking-based state of health estimation for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 604-614. DOI: 10.1109/TIE.2023.3247735. |
16 | LI R, LI W R, ZHANG H N. State of Health and Charge Estimation Based on Adaptive Boosting integrated with particle swarm optimization/support vector machine (AdaBoost-PSO-SVM) Model for Lithium-ion Batteries[J]. International Journal of Electrochemical Science, 2022, 17(2): 220212. DOI: 10.20964/2022.02.03. |
17 | GAO Z H, XIE H C, YANG X B, et al. SOH estimation method for lithium-ion batteries under low temperature conditions with nonlinear correction[J]. Journal of Energy Storage, 2024, 75: 109690. DOI: 10.1016/j.est.2023.109690. |
18 | CHEN S Z, LIANG Z K, YUAN H L, et al. Li-ion battery state-of-health estimation based on the combination of statistical and geometric features of the constant-voltage charging stage[J]. Journal of Energy Storage, 2023, 72: 108647. DOI: 10.1016/j.est. 2023.108647. |
19 | YU Q Q, NIE Y W, LIU S Z, et al. State of health estimation method for lithium-ion batteries based on multiple dynamic operating conditions[J]. Journal of Power Sources, 2023, 582: 233541. DOI: 10.1016/j.jpowsour.2023.233541. |
20 | PENG S M, SUN Y X, LIU D D, et al. State of health estimation of lithium-ion batteries based on multi-health features extraction and improved long short-term memory neural network[J]. Energy, 2023, 282: 128956. DOI: 10.1016/j.energy.2023.128956. |
21 | YAN N, YAO Y B, JIA Z D, et al. Online battery health diagnosis for electric vehicles based on DTW-XGBoost[J]. Energy Reports, 2022, 8: 121-128. DOI: 10.1016/j.egyr.2022.09.126. |
22 | JAFARI S, BYUN Y C. Prediction of the battery state using the digital twin framework based on the battery management system[J]. IEEE Access, 2022, 10: 124685-124696. DOI: 10.1109/ACCESS.2022.3225093. |
23 | WU J, FANG L C, DONG G Z, et al. State of health estimation of lithium-ion battery with improved radial basis function neural network[J]. Energy, 2023, 262: 125380. DOI: 10.1016/j.energy. 2022.125380. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[3] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[4] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[5] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[6] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[7] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[8] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[9] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[10] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[11] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[12] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[13] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[14] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[15] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||