Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3084-3093.doi: 10.19799/j.cnki.2095-4239.2024.0643
Hongsheng GUAN(), Cheng QIAN(), Bo SUN, Yi REN
Received:
2024-07-11
Revised:
2024-07-28
Online:
2024-09-28
Published:
2024-09-20
Contact:
Cheng QIAN
E-mail:guanhs@buaa.edu.cn;cqian@buaa.edu.cn
CLC Number:
Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions[J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093.
Table 1
Hyperparameters of the four neural network models"
模型 | 网络层 | 输出形状 | 参数量 | 模型 | 网络层 | 输出形状 | 参数量 |
---|---|---|---|---|---|---|---|
MLP | flatten层 | (32,16) | 14667 | GRU | GRU层 | (32,16,25) | 14965 |
全连接层0 | (32,298) | flatten层 | (32,400) | ||||
全连接层1 | (32,32) | 全连接层1 | (32,32) | ||||
全连接层2 | (32,1) | 全连接层2 | (32,1) | ||||
CNN | 卷积层 | (32,64,7) | 14657 | LSTM | LSTM层 | (32,16,24) | 14948 |
flatten层 | (32,448) | flatten层 | (32,384) | ||||
全连接层1 | (32,32) | 全连接层1 | (32,32) | ||||
全连接层2 | (32,1) | 全连接层2 | (32,1) |
Fig. 5
Capacity degradation trajectory prediction results of the GRU model: (a) absolute error of capacity prediction for 74 cells; (b) capacity degradation trajectory prediction results corresponding to the minimum MAPE; (c) capacity degradation trajectory prediction results corresponding to the maximum MAPE; (d) MAPE distribution; (e) RMSE distribution"
1 | LI C, ZHANG H H, DING P, et al. Deep feature extraction in lifetime prognostics of lithium-ion batteries: Advances, challenges and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113576. DOI: 10.1016/j.rser.2023.113576. |
2 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. DOI: 10.1038/s41560-019-0356-8. |
3 | QIAN C, XU B H, CHANG L, et al. Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries[J]. Energy, 2021, 227: 120333. DOI: 10.1016/j.energy.2021.120333. |
4 | QIAN C, GUAN H S, XU B H, et al. A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions[J]. Energy, 2024, 294: 130764. DOI: 10.1016/j.energy.2024.130764. |
5 | LIN C P, XU J, MEI X S. Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data[J]. Energy Storage Materials, 2023, 54: 85-97. DOI: 10.1016/j.ensm.2022.10.030. |
6 | XIONG R, TIAN J P, SHEN W X, et al. Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy[J]. Journal of Energy Chemistry, 2023, 76: 404-413. DOI: 10.1016/j.jechem.2022.09.045. |
7 | CHE Y H, HU X S, LIN X K, et al. Health prognostics for lithium-ion batteries: Mechanisms, methods, and prospects[J]. Energy & Environmental Science, 2023, 16(2): 338-371. DOI: 10.1039/D2EE03019E. |
8 | XU L, DENG Z W, XIE Y, et al. A novel hybrid physics-based and data-driven approach for degradation trajectory prediction in Li-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2628-2644. DOI: 10.1109/TTE.2022.3212024. |
9 | STRANGE C, DOS REIS G. Prediction of future capacity and internal resistance of Li-ion cells from one cycle of input data[J]. Energy and AI, 2021, 5: 100097. DOI: 10.1016/j.egyai.2021.100097. |
10 | ZHOU Z Y, LIU Y G, YOU M X, et al. Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100008. DOI: 10.1016/j.geits.2022.100008. |
11 | ZHAO G C, KANG Y Z, HUANG P, et al. Battery health prognostic using efficient and robust aging trajectory matching with ensemble deep transfer learning[J]. Energy, 2023, 282: 128228. DOI: 10.1016/j.energy.2023.128228. |
12 | CHE Y H, FOREST F, ZHENG Y S, et al. Health prediction for lithium-ion batteries under unseen working conditions[J]. IEEE Transactions on Industrial Electronics, 2024, PP(99): 1-11. DOI: 10.1109/TIE.2024.3379664. |
13 | QIAN C, XU B H, XIA Q, et al. SOH prediction for lithium-Ion batteries by using historical state and future load information with an AM-seq2seq model[J]. Applied Energy, 2023, 336: 120793. DOI: 10.1016/j.apenergy.2023.120793. |
14 | 唐梓巍, 师玉璞, 张雨禅, 等. 基于Informer神经网络的锂离子电池容量退化轨迹预测[J]. 储能科学与技术, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812. |
TANG Z W, SHI Y P, ZHANG Y S, et al. Prediction of lithium-ion battery capacity degradation trajectory based on Informer[J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. DOI: 10.19799/j.cnki.2095-4239.2023.0812. | |
15 | HAN C, GAO Y C, CHEN X, et al. A self-adaptive, data-driven method to predict the cycling life of lithium-ion batteries[J]. InfoMat, 2024, 6(4): e12521. DOI: 10.1002/inf2.12521. |
16 | LI W H, ZHANG H T, VAN VLIJMEN B, et al. Forecasting battery capacity and power degradation with multi-task learning[J]. Energy Storage Materials, 2022, 53: 453-466. DOI: 10.1016/j.ensm.2022.09.013. |
17 | LIN C P, XU J, JIANG D L, et al. A comparative study of data-driven battery capacity estimation based on partial charging curves[J]. Journal of Energy Chemistry, 2024, 88: 409-420. DOI: 10.1016/j.jechem.2023.09.025. |
18 | MA Y, YAO M H, LIU H C, et al. State of health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network[J]. Journal of Energy Storage, 2022, 52: 104750. DOI: 10.1016/j.est.2022.104750. |
19 | RUAN H K, WEI Z B, SHANG W T, et al. Artificial intelligence-based health diagnostic of lithium-ion battery leveraging transient stage of constant current and constant voltage charging[J]. Applied Energy, 2023, 336: 120751. DOI: 10.1016/j.apenergy. 2023.120751. |
20 | QIAN C, XU B H, XIA Q, et al. A dual-input neural network for online state-of-charge estimation of the lithium-ion battery throughout its lifetime[J]. Materials, 2022, 15(17): 5933. DOI: 10.3390/ma15175933. |
21 | 管鸿盛, 钱诚, 徐炳辉, 等. 融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(7): 2229-2237. DOI: 10.19799/j.cnki.2095-4239.2023.0292. |
GUAN H S, QIAN C, XU B H, et al. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions[J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. DOI: 10.19799/j.cnki. 2095-4239.2023.0292. | |
22 | SUN B, PAN J L, WU Z Y, et al. Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries[J]. Journal of Power Sources, 2023, 556: 232432. DOI: 10.1016/j.jpowsour.2022.232432. |
23 | MA G J, XU S P, JIANG B B, et al. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning[J]. Energy & Environmental Science, 2022, 15(10): 4083-4094. DOI: 10.1039/D2EE01676A. |
[1] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[2] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[3] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[4] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[5] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[6] | Bin DENG, Haiming HUA, Yuzhi ZHANG, Xiaoxu WANG, Linfeng ZHANG. Deep potential model: Applications and insights for electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2024, 13(9): 2884-2906. |
[7] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[8] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[9] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[10] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[11] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[12] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
[13] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
[14] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[15] | Wentao WANG, Yifan WEI, Kun HUANG, Guowei LV, Siyao ZHANG, Xinya TANG, Zeyan CHEN, Qingyuan LIN, Zhipeng MU, Kunhua WANG, Hua CAI, Jun CHEN. Testing standards and developmental advances for low-temperature Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2300-2307. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||