1 |
SCROSATI B, HASSOUN J, SUN Y K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science, 2011, 4(9): 3287.
|
2 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
|
3 |
李泓. 锂离子电池基础科学问题(XV)——总结和展望[J]. 储能科学与技术, 2015, 4(3): 306-318.
|
|
LI H. Fundamental scientific aspects of lithium ion batteries(XV)—Summary and outlook[J]. Energy Storage Science and Technology, 2015, 4(3): 306-318.
|
4 |
NAGASUBRAMANIAN G. Electrical characteristics of 18650 Li-ion cells at low temperatures[J]. Journal of Applied Electrochemistry, 2001, 31(1): 99-104.
|
5 |
KULOVA T L, SKUNDIN A M. A critical review of electrode materials and electrolytes for low-temperature lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(9): 8638-8661.
|
6 |
WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529: 515-518.
|
7 |
HAO M L, LI J, PARK S, et al. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy[J]. Nature Energy, 2018, 3: 899-906.
|
8 |
SHAHJALAL M, SHAMS T, ISLAM M E, et al. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues[J]. Journal of Energy Storage, 2021, 39: 102518.
|
9 |
GE H, AOKI T, IKEDA N, et al. Investigating lithium plating in lithium-ion batteries at low temperatures using electrochemical model with NMR assisted parameterization[J]. Journal of the Electrochemical Society, 2017, 164(6): A1050-A1060.
|
10 |
SMART M C, RATNAKUMAR B V. Effects of electrolyte composition on lithium plating in lithium-ion cells[J]. Journal of the Electrochemical Society, 2011, 158(4): A379-A389.
|
11 |
GORIPARTI S, MIELE E, DE ANGELIS F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 257: 421-443.
|
12 |
TAN L, HU R Z, ZHANG H Y, et al. Subzero temperature promotes stable lithium storage in SnO2[J]. Energy Storage Materials, 2021, 36: 242-250.
|
13 |
XIONG X Y, ZHOU G, YU H C, et al. InSb: A stable cycling anode material enables fast charging of Li-ion batteries at sub-zero temperatures[J]. ACS Energy Letters, 2023, 8(5): 2432-2439.
|
14 |
SHI X J, LIU W Q, ZHANG D Y, et al. Nanoscale localized growth of SnSb for general-purpose high performance alkali (Li, Na, K) ion storage[J]. Chemical Engineering Journal, 2022, 431: 134318.
|
15 |
YU J, YANG T H, HAO W, et al. First-principles prediction on antimony-doping effects on the cyclic stability of tin anodes for lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2022, 24(29): 17542-17546.
|
16 |
LI J, RU Q, HU S J, et al. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes[J]. Electrochimica Acta, 2013, 113: 505-513.
|
17 |
ZHANG W, SEO D H, CHEN T N, et al. Kinetic pathways of ionic transport in fast-charging lithium titanate[J]. Science, 2020, 367(6481): 1030-1034.
|
18 |
ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): 2107899.
|
19 |
封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807.
|
|
FENG M, CHEN N, CHEN R J. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807.
|