Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 331-345.doi: 10.19799/j.cnki.2095-4239.2024.0675
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yong LIU1(), Huaiwen YU2(
), Dapeng LIU1, Yong MU1, Yingzhou WANG2, Xiuyu ZHANG2
Received:
2024-07-22
Revised:
2024-08-10
Online:
2025-01-28
Published:
2025-02-25
Contact:
Huaiwen YU
E-mail:liu.y.e@jibei.sgcc.com.cn;2202300730@neepu.edu.cn
CLC Number:
Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model[J]. Energy Storage Science and Technology, 2025, 14(1): 331-345.
Table 1
Comparison of performance evaluation metrics for ABC-LSTM and other methods on the nasa utilizing 40% of training data"
序号 | 模型 | MAE | RMSE | R2 | Er | PEr |
---|---|---|---|---|---|---|
B05 | SVR | 0.0189 | 0.0233 | 0.9343 | 2 | 3.57% |
CNN | 0.0227 | 0.0256 | 0.9028 | 8 | 14.29% | |
LSTM | 0.0144 | 0.0199 | 0.9522 | 7 | 12.5% | |
ABC-LSTM | 0.0085 | 0.0104 | 0.9850 | 1 | 1.79% | |
B06 | SVR | 0.0179 | 0.0263 | 0.9324 | 2 | 5% |
CNN | 0.0223 | 0.0297 | 0.9264 | 4 | 10% | |
LSTM | 0.0202 | 0.0256 | 0.9232 | 5 | 12.5% | |
ABC-LSTM | 0.0117 | 0.0163 | 0.9672 | 2 | 5% | |
B07 | SVR | 0.0094 | 0.0150 | 0.9543 | 2 | 2.56% |
CNN | 0.0307 | 0.0326 | 0.8315 | 15 | 19.23% | |
LSTM | 0.0170 | 0.0226 | 0.9189 | 4 | 5.13% | |
ABC-LSTM | 0.0088 | 0.0141 | 0.9681 | 2 | 2.56% | |
B18 | SVR | 0.0135 | 0.0219 | 0.8242 | 2 | 4.65% |
CNN | 0.0362 | 0.0387 | 0.7624 | 10 | 23.25% | |
LSTM | 0.0297 | 0.0318 | 0.8417 | 7 | 16.28% | |
ABC-LSTM | 0.0075 | 0.0139 | 0.9316 | 2 | 4.65% |
Table 2
Comparison of performance evaluation metrics for ABC-LSTM and other methods on the CALCE utilizing 40% of training data"
序号 | 模型 | MAE | RMSE | R2 | Er | PEr |
---|---|---|---|---|---|---|
CS2_35 | SVR | 0.0343 | 0.0409 | 0.9616 | 17 | 2.65% |
CNN | 0.0229 | 0.0332 | 0.9747 | 12 | 1.87% | |
LSTM | 0.0148 | 0.0229 | 0.988 | 7 | 1.09% | |
ABC-LSTM | 0.0073 | 0.0139 | 0.9936 | 2 | 0.31% | |
CS2_36 | SVR | 0.0321 | 0.0408 | 0.9721 | 55 | 8.51% |
CNN | 0.0352 | 0.0436 | 0.9681 | 57 | 8.82% | |
LSTM | 0.0193 | 0.0287 | 0.9863 | 10 | 1.55% | |
ABC-LSTM | 0.0101 | 0.0149 | 0.9920 | 4 | 0.62% |
Table 3
Comparison of performance evaluation metrics for ABC-LSTM and other methods on the NASA utilizing 60% of training data"
序号 | 模型 | MAE | RMSE | R2 | Er | PEr |
---|---|---|---|---|---|---|
B05 | SVR | 0.0121 | 0.0154 | 0.9183 | 0 | 0 |
CNN | 0.0123 | 0.0163 | 0.9211 | 5 | 21.74% | |
LSTM | 0.0128 | 0.0157 | 0.9364 | 2 | 8.7% | |
ABC-LSTM | 0.0058 | 0.0094 | 0.9696 | 0 | 0 | |
B06 | SVR | 0.0076 | 0.0128 | 0.9538 | 2 | 28.57% |
CNN | 0.0159 | 0.0202 | 0.9344 | 2 | 28.57% | |
LSTM | 0.0156 | 0.0194 | 0.9412 | 3 | 42.86% | |
ABC-LSTM | 0.0044 | 0.0095 | 0.9755 | 1 | 14.29% | |
B07 | SVR | 0.0092 | 0.0126 | 0.9430 | 6 | 13.33% |
CNN | 0.0179 | 0.0211 | 0.8423 | 16 | 35.56% | |
LSTM | 0.0104 | 0.0141 | 0.9158 | 2 | 4.44% | |
ABC-LSTM | 0.0051 | 0.0084 | 0.9641 | 1 | 2.22% | |
B18 | SVR | 0.0149 | 0.0250 | 0.7148 | 1 | 5.88% |
CNN | 0.0139 | 0.0247 | 0.7294 | 3 | 17.65% | |
LSTM | 0.0160 | 0.0278 | 0.4503 | 2 | 11.76% | |
ABC-LSTM | 0.0054 | 0.0125 | 0.9182 | 0 | 0 |
Table 4
Comparison of performance evaluation metrics for ABC-LSTM and other methods on the CALCE Utilizing 60% of training data"
序号 | 模型 | MAE | RMSE | R2 | Er | PEr |
---|---|---|---|---|---|---|
CS2_35 | SVR | 0.0255 | 0.0313 | 0.9728 | 11 | 1.72% |
CNN | 0.018 | 0.0258 | 0.9816 | 8 | 1.25% | |
LSTM | 0.0153 | 0.0237 | 0.9845 | 3 | 0.47% | |
ABC-LSTM | 0.0068 | 0.0109 | 0.9969 | 1 | 0.16% | |
CS2_36 | SVR | 0.0253 | 0.0282 | 0.9831 | 6 | 0.93% |
CNN | 0.0209 | 0.0267 | 0.9849 | 5 | 0.77% | |
LSTM | 0.0165 | 0.022 | 0.9898 | 3 | 0.46% | |
ABC-LSTM | 0.0098 | 0.0115 | 0.9957 | 1 | 0.15% |
1 | 万广伟, 廖微, 张强. 锂离子电池剩余使用寿命预测综述[J]. 汽车零部件, 2023(5): 92-95. DOI: 10.19466/j.cnki.1674-1986.2023. 05.018. |
WAN G W, LIAO W, ZHANG Q. Review on the prediction of the remaining useful life of lithium-ion batteries[J]. Automobile Parts, 2023(5): 92-95. DOI: 10.19466/j.cnki.1674-1986.2023.05.018. | |
2 | KARIJADI I, CHOU S Y, DEWABHARATA A. Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method[J]. Renewable Energy, 2023, 218: 119357. DOI: 10.1016/j.renene.2023.119357. |
3 | 闫啸宇, 周思达, 卢宇, 等. 锂离子电池容量衰退机理与影响因素[J]. 北京航空航天大学学报, 2023, 49(6): 1402-1413. DOI: 10.13700/j.bh.1001-5965.2021.0458. |
YAN X Y, ZHOU S D, LU Y, et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1402-1413. DOI: 10.13700/j.bh.1001-5965.2021.0458. | |
4 | FENG L, JIANG L H, LIU J L, et al. Dynamic overcharge investigations of lithium ion batteries with different state of health[J]. Journal of Power Sources, 2021, 507: 230262. DOI: 10.1016/j.jpowsour.2021.230262. |
5 | 康健强, 龚智超, 钱春虎, 等. 锂离子电池在高脉冲工况下老化机理的分析与研究[J]. 电工电能新技术, 2023, 42(10): 35-45. DOI: 10.3969/j.issn.1001-3849.2005.03.003. |
KANG J Q, GONG Z C, QIAN C H, et al. Analysis and research on aging mechanism of lithium-ion battery under high pulse current condition[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(10): 35-45. DOI: 10.3969/j.issn.1001-3849.2005.03.003. | |
6 | LI R, BAO L Y, CHEN L, et al. Accelerated aging of lithium-ion batteries: Bridging battery aging analysis and operational lifetime prediction[J]. Science Bulletin, 2023, 68(23): 3055-3079. DOI: 10.1016/j.scib.2023.10.029. |
7 | 张若可, 郭永芳, 余湘媛, 等. 基于数据驱动的锂离子电池RUL预测综述[J]. 电源学报, 2023, 21(5): 182-190. DOI: 10.13234/j.issn.2095-2805.2023.5.182. |
ZHANG R K, GUO Y F, YU X Y, et al. Review of data-driven RUL prediction for lithium-ion batteries[J]. Journal of Power Supply, 2023, 21(5): 182-190. DOI: 10.13234/j.issn.2095-2805.2023.5.182. | |
8 | 吴祎, 王友仁. 基于变分模态分解和高斯过程回归的锂离子电池剩余寿命预测方法[J]. 计算机与现代化, 2020(2): 83-88. DOI: 10.3969/j.issn.1006-2475.2020.02.017. |
WU Y, WANG Y R. Remaining useful life prediction of lithium-ion batteries based on VMD and GPR algorithm[J]. Computer and Modernization, 2020(2): 83-88. DOI: 10.3969/j.issn.1006-2475.2020.02.017. | |
9 | 王志福, 罗崴, 闫愿, 等. 基于多方法融合的锂离子电池SOC-SOH联合估计[J]. 北京理工大学学报, 2023, 43(6): 575-584. DOI: 10.15918/j.tbit1001-0645.2022.148. |
WANG Z F, LUO W, YAN Y, et al. Joint SOC-SOH estimation for Li-ion batteries based on multi-method fusion[J]. Transactions of Beijing Institute of Technology, 2023, 43(6): 575-584. DOI: 10.15918/j.tbit1001-0645.2022.148. | |
10 | PENG J K, LUO J Y, HE H W, et al. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries[J]. Applied Energy, 2019, 253: 113520. DOI: 10.1016/j.apenergy.2019.113520. |
11 | 李银, 王建峰, 莫伟权, 等. 基于数据驱动的锂离子电池剩余寿命预测综述[J/OL]. 电源学报, 1-16[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230613.1715.002.html. |
LI Y, WANG J F, MO W Q, et al. A data-driven survey on the remaining useful life prediction of lithium-Ion batteries[J/OL]. Journal of Power Supply, 1-16[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20230613.1715.002.html. | |
12 | 肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341. |
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341. | |
13 | 何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-0422. |
HE B C, YANG X M, WANG J S, et al. Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 484-491. DOI: 10.19912/j.0254-0096.tynxb.2022-0422. | |
14 | 张洪生, 尚鑫磊. 基于DAE-BLS的锂离子电池剩余使用寿命预测方法[J/OL]. 计算机集成制造系统, 1-15[2024-06-21]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230410.1518.022.html. |
ZHANG H S, SHANG X L. A remaining useful life prediction method for lithium-Ion batteries based on DAE-BLS[J/OL]. Computer Integrated Manufacturing Systems, 1-15[2024-06-21]. http://kns.cnki.net/kcms/detail/11.5946.TP.20230410.1518.022.html. | |
15 | 崔显, 陈自强, 卢地华, 等. 基于KCC-PF的锂离子电池剩余使用寿命预测[J]. 装备环境工程, 2022, 19(4): 86-94. |
CUI X, CHEN Z Q, LU D H, et al. Remaining useful life prediction of lithium-ion battery based on Kendall rank correlation coefficient particle filter[J]. Equipment Environmental Engineering, 2022, 19(4): 86-94. | |
16 | 邹红波, 柴延辉, 杨钦贺, 等. 基于混合ISSA-LSTM的锂离子电池剩余使用寿命预测[J]. 电力系统保护与控制, 2023, 51(19): 21-31. DOI: 10.19783/j.cnki.pspc.230297. |
ZOU H B, CHAI Y H, YANG Q H, et al. Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM[J]. Power System Protection and Control, 2023, 51(19): 21-31. DOI: 10.19783/j.cnki.pspc.230297. | |
17 | 莫易敏, 陈佳浩, 叶鹏, 等. 基于多健康因子LSTM的电池容量估计方法[J/OL]. 电源学报, 1-13[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231204.1025.002.html. |
MO Y M, CHEN J H, YE P, et al. Battery capacity estimation method based on multiple health factors LSTM[J/OL]. Journal of Power Supply, 1-13[2024-06-21]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231204.1025.002.html. | |
18 | 尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890. |
YIN J, LIU B, SUN G B, et al. Transfer learning denoising autoencoder-long short term memory for remaining useful life prediction of Li-ion batteries[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 289-302. DOI: 10.19595/j.cnki.1000-6753.tces.221890. | |
19 | ANGELICA F, HYDRO R, SULISTIYA Z D, et al. DeepLyric: Predicting music emotions through LSTM-GRU hybrid models with regularization techniques[J]. Procedia Computer Science, 2023, 227: 973-980. DOI: 10.1016/j.procs.2023.10.606. |
20 | KAYA E, GORKEMLI B, AKAY B, et al. A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems[J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105311. DOI: 10.1016/j.engappai.2022. 105311. |
21 | 朱子敬, 何利文. 基于ABC-LSTM-GRU的时间序列分解与预测模型[J]. 软件工程, 2024, 27(3): 58-62. DOI: 10. 19644/j.cnki.issn2096-1472.2024.003.012. |
ZHU Z J, HE L W. Time series decomposition and prediction model based on ABC-LSTM-GRU[J]. Software Engineering, 2024, 27(3): 58-62. DOI: 10.19644/j.cnki.issn2096-1472.2024.003.012. | |
22 | GONG Y D, ZHANG X Y, GAO D Z, et al. State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm[J]. Journal of Energy Storage, 2022, 53: 105046. DOI: 10.1016/j.est.2022.105046. |
23 | LIU Y W, SUN J, SHANG Y L, et al. A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm[J]. Journal of Energy Storage, 2023, 61: 106645. DOI: 10.1016/j.est.2023.106645. |
24 | 郝可青, 吕志刚, 邸若海, 等. 基于鲸鱼算法优化长短时记忆神经网络的锂电池剩余寿命预测[J]. 科学技术与工程, 2022, 22(29): 12900-12908. DOI: 10.3969/j.issn.1671-1815.2022.29.025. |
HAO K Q, LYU Z G, DI R H, et al. Remaining useful life prediction of lithium battery based on long short-term memory optimized by whale optimization algorithm[J]. Science Technology and Engineering, 2022, 22(29): 12900-12908. DOI: 10.3969/j.issn.1671-1815.2022.29.025. |
[1] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
[2] | Yuanxiu XING, Zhuanwei LIU, Yufeng XING, Wenbo WANG. BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 370-379. |
[3] | Shifeng YE, Chaofeng HONG, Xiao QI, Weixiong WU, Zijian TAN, Qi ZHOU, Zhaoyang ZHANG. Lithium-ion batteries surface temperature prediction toward EEMD-GRU-NN method [J]. Energy Storage Science and Technology, 2025, 14(1): 380-387. |
[4] | Ke LI, Shunbing ZHU, Zhige TAO, He WANG. Fire suppression experiment of lithium iron phosphate battery with composite water extinguishing agent [J]. Energy Storage Science and Technology, 2025, 14(1): 140-151. |
[5] | Wenjing ZHANG, Wei XIAO, Yahui YI, Liqin QIAN. Progress on safety modification strategies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 104-123. |
[6] | Zheng CHEN, Yue PENG, Jingyuan HU, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. Lithium battery capacity prediction based on short-term charging data and an enhanced whale optimization algorithm [J]. Energy Storage Science and Technology, 2025, 14(1): 319-330. |
[7] | Yingying LIU, Xiaoyuan ZHANG, Mengnan LIU, junzhang SUN, Yan ZHANG. State of health interval estimation for lithium battery via Gaussian process regression with adaptive optimal combination Kernel function [J]. Energy Storage Science and Technology, 2025, 14(1): 346-357. |
[8] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[9] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[10] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[11] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[12] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[13] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[14] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[15] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||