Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1087-1096.doi: 10.19799/j.cnki.2095-4239.2024.1122
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Deqing ZHOU1(), Yijia CAI2, Ziqin ZHANG2, Liping ZHOU1, Sijiang HU2(
), Youguo HUANG2, Hongqiang WANG2, Qingyu LI2
Received:
2024-11-27
Revised:
2024-12-28
Online:
2025-03-28
Published:
2025-04-28
Contact:
Sijiang HU
E-mail:66194391@qq.com;sjhu@gxnu.edu.cn
CLC Number:
Deqing ZHOU, Yijia CAI, Ziqin ZHANG, Liping ZHOU, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Electrochemical properties of spinel MoS2 coated lithium-rich manganese-based cathode materials[J]. Energy Storage Science and Technology, 2025, 14(3): 1087-1096.
1 | SU W, SONG H, MAO H C, et al. Surface ultrathin and uniform spinel structure induced by boron and fluorine dual doping for enhanced structure stability of Li-rich layered oxides[J]. Chemical Engineering Journal, 2023, 475: 146350. DOI: 10.1016/j.cej. 2023.146350. |
2 | JANG H Y, EUM D, CHO J, et al. Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes[J]. Nature Communications, 2024, 15(1): 1288. DOI: 10.1038/s41467-024-45490-x. |
3 | ZHENG J M, MYEONG S, CHO W, et al. Li- and Mn-rich cathode materials: Challenges to commercialization[J]. Advanced Energy Materials, 2017, 7(6): 1601284. DOI: 10.1002/aenm.201601284. |
4 | YU X Q, LYU Y C, GU L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Advanced Energy Materials, 2014, 4(5): 1300950. DOI: 10.1002/aenm.201300950. |
5 | 王俊, 张学全, 刘亚飞, 等. 高容量富锂锰基正极材料的研究进展[J]. 储能科学与技术, 2022, 11(10): 3051-3061. DOI: 10.19799/j.cnki. 2095-4239.2022.0480. |
WANG J, ZHANG X Q, LIU Y F, et al. Research progress of high capacity Li-Mn-rich cathode materials[J]. Energy Storage Science and Technology, 2022, 11(10): 3051-3061. DOI: 10.19799/j.cnki. 2095-4239.2022.0480. | |
6 | 周俊飞, 蔡星鹏, 丁浩, 等. 阴离子氧化还原反应对富锂锰基正极材料的影响及其改性策略[J]. 储能科学与技术, 2022, 11(12): 3733-3740. DOI: 10.19799/j.cnki.2095-4239.2022.0382. |
ZHOU J F, CAI X P, DING H, et al. Effect of anionic redox reaction on lithium-rich manganese-based materials and its modification strategy[J]. Energy Storage Science and Technology, 2022, 11(12): 3733-3740. DOI: 10.19799/j.cnki.2095-4239.2022.0382. | |
7 | ZHANG J L, ZHANG D, WANG Z S, et al. AlF3 coating improves cycle and voltage decay of Li-rich manganese oxides[J]. Journal of Materials Science, 2023, 58(10): 4525-4540. DOI: 10.1007/s10853-022-08038-2. |
8 | SHANMUGAM V, NATARAJAN S, LOBO L S, et al. Surface oxygen vacancy engineering and physical protection by in situ carbon coating process of lithium rich layered oxide[J]. Journal of Power Sources, 2021, 515: 230623. DOI: 10.1016/j.jpowsour. 2021.230623. |
9 | WANG G R, XU M, FEI L F, et al. Toward high-performance Li-rich Mn-based layered cathodes: A review on surface modifications[J]. Small, 2024, 20(49): e2405659. DOI: 10.1002/smll.202405659. |
10 | 李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3): 394-403. DOI: 10. 12028/j.issn.2095-4239.2018.0010. |
LI Y, ZHAO H C, BAI Y, et al. Progress in the modification of lithium-rich manganese-based layered cathode material[J]. Energy Storage Science and Technology, 2018, 7(3): 394-403. DOI: 10.12028/j.issn.2095-4239.2018.0010. | |
11 | MA Q X, YANG M Q, MENG J X, et al. Interfacial-engineering-enabled high-performance Li-rich cathodes[J]. Chemical Engineering Journal, 2024, 485: 149546. DOI: 10.1016/j.cej. 2024.149546. |
12 | PEI Y, XU C Y, XIAO Y C, et al. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties[J]. Advanced Functional Materials, 2017, 27(7): 1604349. DOI: 10.1002/adfm.201604349. |
13 | LEI T X, CAO B, FU W B, et al. A Li-rich layered oxide cathode with remarkable capacity and prolonged cycle life[J]. Chemical Engineering Journal, 2024, 490: 151522. DOI: 10.1016/j.cej. 2024.151522. |
14 | MEI J, GAO G Y, CHEN Y Z, et al. Construction of LiNi0.5Mn1.5O4 spinel layer-bearing heterostructural Li-rich layered oxide cathodes with enhanced structural integrity and cycling stability[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(4): 1353-1364. DOI: 10.1021/acssuschemeng.3c04620. |
15 | LI B J, WANG Q B, ZHANG Y, et al. Nickel-modified and zirconium-modified Li2MnO3 and applications in lithium-ion battery[J]. International Journal of Electrochemical Science, 2013, 8(4): 5396-5406. DOI: 10.1016/S1452-3981(23)14690-6. |
16 | LEE Y J, KIM T H, KWON Y K, et al. Selective formation of the Li4Mn5O12 surface spinel phase in sulfur-doped Li-excess-layered cathode materials for improved cycle life[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 8037-8048. DOI: 10.1021/acssuschemeng.0c02687. |
17 | ZHANG X D, SHI J L, LIANG J Y, et al. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating[J]. Advanced Materials, 2018: e1801751. DOI: 10.1002/adma.201801751. |
18 | ZHANG J C, GAO R, SUN L M, et al. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25711-25720. DOI: 10.1039/C6CP03683J. |
19 | SUO G Q, ZHANG J Q, LI D, et al. Flexible N doped carbon/bubble-like MoS2 core/sheath framework: Buffering volume expansion for potassium ion batteries[J]. Journal of Colloid and Interface Science, 2020, 566: 427-433. DOI: 10.1016/j.jcis. 2020. 01.113. |
20 | YU W H, WANG Y Y, WU A M, et al. Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy[J]. Green Energy & Environment, 2024, 9(1): 138-151. DOI: 10.1016/j.gee.2022.06.001. |
21 | ZHANG S, LI S H, ZHANG H Y, et al. Integrating surface structure via triphenyl phosphate treatment to stabilize Li-rich Mn-based cathode materials[J]. Journal of Colloid and Interface Science, 2023, 640: 373-382. DOI: 10.1016/j.jcis.2023.02.054. |
22 | YU H J, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5): 2907-2915. DOI: 10.1021/acs.nanolett.5b03933. |
23 | AN J, SHI L Y, CHEN G R, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744. DOI: 10.1039/C7TA05971J. |
24 | WANG F F, JI Y R, CHEN Y H, et al. Rational construction of graphitic carbon nitride composited Li-rich Mn-based oxide cathode materials toward high-performance Li-ion battery[J]. Journal of Colloid and Interface Science, 2023, 652: 577-589. DOI: 10.1016/j.jcis.2023.08.118. |
25 | YU Z Z, LU Q, WANG Y Z, et al. Self-compacting engineering to achieve high-performance lithium-rich layered oxides cathode materials[J]. Applied Surface Science, 2023, 619: 156683. DOI: 10.1016/j.apsusc.2023.156683. |
26 | XIE H X, CUI J X, YAO Z, et al. Revealing the role of spinel phase on Li-rich layered oxides: A review[J]. Chemical Engineering Journal, 2022, 427: 131978. DOI: 10.1016/j.cej. 2021.131978. |
27 | LIU P F, ZHANG H, HE W, et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode[J]. Journal of the American Chemical Society, 2019, 141(27): 10876-10882. DOI: 10.1021/jacs.9b04974. |
28 | QIU B, ZHANG M H, WU L J, et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications, 2016, 7: 12108. DOI: 10.1038/ncomms12108. |
29 | KUBOTA K, KANEKO T, HIRAYAMA M, et al. Direct synthesis of oxygen-deficient Li2MnO3- x for high capacity lithium battery electrodes[J]. Journal of Power Sources, 2012, 216: 249-255. DOI: 10.1016/j.jpowsour.2012.05.061. |
30 | ZHAO T L, CHEN S, CHEN R J, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li [Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21711-21720. DOI: 10.1021/am506934j. |
31 | FAN Y M, ZHANG W C, ZHAO Y L, et al. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure[J]. Energy Storage Materials, 2021, 40: 51-71. DOI: 10.1016/j.ensm. 2021.05.005. |
32 | NISAR U, MURALIDHARAN N, ESSEHLI R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials, 2021, 38: 309-328. DOI: 10.1016/j.ensm.2021.03.015. |
[1] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
[2] | Jiawei LI, Zhen LIU. Numerical simulation and performance analysis of a wet cooling system for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 717-727. |
[3] | Junyu JIAO, Quanquan ZHANG, Ningbo CHEN, Jiyu WANG, Qiudi LU, Haohao DING, Peng PENG, Xiaohe SONG, Fan ZHANG, Jiaxin ZHENG. Development and applications of an intelligent big data analysis platform for batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 3198-3213. |
[4] | Kaiyue YANG, Xinbing XIE, Xiaozhong DU. Exploration of lithium battery electrode calendering process based on discrete element method [J]. Energy Storage Science and Technology, 2024, 13(8): 2570-2579. |
[5] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[6] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
[7] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[8] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[9] | Yuhao WANG, Zhiyong LI, Xin GUO. Applications and challenges of polymer-based electrolytes in low-temperature solid-state lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2243-2258. |
[10] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[11] | Baoquan LIU, Xiaoyu CAO. Accurate typical gas detection of lithium battery in early thermal runaway period [J]. Energy Storage Science and Technology, 2024, 13(6): 1995-2009. |
[12] | Wei XIAO, Xiaowen WU, Jingling SUN, Wei CHEN. Numerical calculation of temperature field of energy storage battery module and optimization design of heat dissipation system [J]. Energy Storage Science and Technology, 2024, 13(4): 1159-1166. |
[13] | Yaning ZHU, Zhendong ZHANG, Lei SHENG, Long CHEN, Zehua ZHU, Linxiang FU, Qing BI. Thermal runaway experiment of 21700 lithium-ion battery under different health conditions [J]. Energy Storage Science and Technology, 2024, 13(3): 971-980. |
[14] | Qilin GUO, Liangyu TAO, Zheshu MA, Yongming GU, Yuting WANG. Numerical simulation analysis of combustion of electric sport utility vehicles [J]. Energy Storage Science and Technology, 2024, 13(3): 1000-1008. |
[15] | Zhige TAO, Shunbing ZHU, Shuangping HOU, Ke LI, He WANG. Comprehensive research on fire and safety protection technology for lithium battery energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(2): 536-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||