Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2386-2398.doi: 10.19799/j.cnki.2095-4239.2024.0034
• Energy Storage Materials and Devices • Previous Articles Next Articles
Hong ZHOU1,2,3(), Zhulin XIN1,2, Hao FU1,2, Qiang ZHANG4, Feng WEI1,2,3
Received:
2024-01-10
Revised:
2024-02-01
Online:
2024-07-28
Published:
2024-07-23
Contact:
Hong ZHOU
E-mail:zhouh@mail.whlib.ac.cn
CLC Number:
Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining[J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398.
Table 1
Analysis of main materials contained in the solid-state lithium battery patents"
序号 | 材料中文名 | 材料英文名 | 频次 | 时间范围 | 2020年后专利占比 |
---|---|---|---|---|---|
1 | 锂 | lithium | 2648 | 1998—2023 | 35.65% |
2 | 硫化物 | sulfide | 767 | 2003—2023 | 34.29% |
3 | 硫 | sulfur | 512 | 2003—2023 | 29.30% |
4 | 磷 | phosphorus | 382 | 2003—2023 | 35.34% |
5 | 铝 | aluminum | 318 | 2007—2023 | 44.97% |
6 | 氧 | oxygen | 304 | 2003—2023 | 42.11% |
7 | 碳 | carbon | 300 | 2001—2023 | 43.00% |
8 | 硅 | silicon | 286 | 1999—2023 | 34.27% |
9 | 氧化物 | oxide | 276 | 1999—2023 | 45.65% |
10 | 锆 | zirconium | 241 | 2007—2023 | 40.66% |
11 | 镧 | lanthanum | 208 | 2007—2023 | 39.90% |
12 | 硫化锂 | lithium sulfide | 192 | 2001—2023 | 32.67% |
13 | 钛 | titanium | 166 | 2008—2023 | 47.59% |
14 | 镍 | nickel | 163 | 2008—2023 | 42.33% |
15 | 氟 | fluorine | 141 | 2008—2023 | 61.70% |
16 | 氯 | chlorine | 140 | 2010—2023 | 52.14% |
17 | 溴 | bromine | 130 | 2010—2023 | 52.31% |
18 | 镁 | magnesium | 130 | 2007—2023 | 42.31% |
19 | 硼 | boron | 129 | 2003—2023 | 24.81% |
20 | 碘 | iodine | 125 | 2010—2023 | 51.20% |
Table 2
Solid-state lithium battery center degree TOP 10 materials and score"
排名 | 点度中心度 | 中介中心度 | 接近中心度 | 特征向量中心度 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
材料 | 得分 | 材料 | 得分 | 材料 | 得分 | 材料 | 得分 | ||||
1 | 锂 | 129 | 锂 | 6637.744 | 锂 | 0.006711 | 锂 | 0.250 | |||
2 | 铝 | 52 | 硫化物 | 282.189 | 铝 | 0.004405 | 铝 | 0.216 | |||
3 | 磷 | 47 | 铝 | 168.507 | 硫化物 | 0.004310 | 锆 | 0.203 | |||
4 | 硫化物 | 46 | 硫化锂 | 161.041 | 磷 | 0.004310 | 镁 | 0.201 | |||
5 | 硅 | 45 | 铌 | 157.523 | 硅 | 0.004274 | 硅 | 0.195 | |||
6 | 锆 | 45 | 磷 | 155.249 | 锆 | 0.004237 | 钛 | 0.195 | |||
7 | 镁 | 42 | 硅 | 136.948 | 硫 | 0.004184 | 磷 | 0.194 | |||
8 | 硫 | 40 | 硫 | 112.712 | 镁 | 0.004184 | 铌 | 0.192 | |||
9 | 钛 | 40 | 硫化磷 | 76.954 | 铌 | 0.004149 | 锡 | 0.185 | |||
10 | 铌 | 40 | 锆 | 74.872 | 钛 | 0.004149 | 锗 | 0.178 |
1 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. DOI: 10.1021/cm901452z. |
2 | MANTHIRAM A, CHUNG S H, ZU C X. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006. DOI: 10.1002/adma.201405115. |
3 | 张怡, 葛筱渔, 李真, 等. 用于锂电池监测的声学和光学传感技术研究进展[J]. 储能科学与技术, 2024, 13(1): 167-177. DOI: 10.19799/j.cnki.2095-4239.2023.0807. |
ZHANG Y, GE X Y, LI Z, et al. Progress on acoustic and optical sensing technologies for lithium rechargeable batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 167-177. DOI: 10.19799/j.cnki.2095-4239.2023.0807. | |
4 | QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540. DOI: 10.1039/C0CS00081G. |
5 | 吴敬华, 杨菁, 刘高瞻, 等. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. DOI: 10.19799/j.cnki.2095-4239.2022.0309. |
WU J H, YANG J, LIU G Z, et al. Review and prospective of solid-state lithium batteries in the past decade(2011—2021)[J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. DOI: 10.19799/j.cnki.2095-4239.2022.0309. | |
6 | RAJ V, AETUKURI N P B, NANDA J. Solid state lithium metal batteries-Issues and challenges at the lithium-solid electrolyte interface[J]. Current Opinion in Solid State and Materials Science, 2022, 26(4): 100999. DOI: 10.1016/j.cossms.2022.100999. |
7 | GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): e1705702. DOI: 10.1002/adma.201705702. |
8 | 张鹏, 赖兴强, 沈俊荣, 等. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. DOI: 10.19799/j.cnki.2095-4239.2020.0408. |
ZHANG P, LAI X Q, SHEN J R, et al. Research and industrialization progress of solid-state lithium battery[J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. DOI: 10.19799/j.cnki.2095-4239.2020.0408. | |
9 | 杨建锋, 李林艳, 吴振岳, 等. 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837. DOI: 10.12028/j.issn.2095-4239.2019.0056. |
YANG J F, LI L Y, WU Z Y, et al. Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837. DOI: 10.12028/j.issn.2095-4239.2019.0056. | |
10 | LIN Z, LIU Z C, DUDNEY N J, et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833. DOI: 10.1021/nn400391h. |
11 | 张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5): 861-868. DOI: 10.12028/j.issn.2095-4239.2018.0139. |
ZHANG J J, DONG T T, YANG J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868. DOI: 10.12028/j.issn.2095-4239.2018.0139. | |
12 | 姜鹏峰, 石元盛, 李康万, 等. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537. DOI: 10.19799/j.cnki.2095-4239.2019.0286. |
JIANG P F, SHI Y S, LI K W, et al. Recent progress on the Li7La3Zr2O12(LLZO) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. DOI: 10.19799/j.cnki.2095-4239.2019.0286. | |
13 | CHEN Y, WEN K H, CHEN T H, et al. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces[J]. Energy Storage Materials, 2020, 31: 401-433. DOI: 10.1016/j.ensm.2020.05.019. |
14 | 李栋, 雷超, 赖华, 等. 全固态锂离子电池正极与石榴石型固体电解质界面的研究进展[J]. 无机材料学报, 2019, 34(7): 694-702. DOI: 10.15541/jim20180512. |
LI D, LEI C, LAI H, et al. Recent advancements in interface between cathode and garnet solid electrolyte for all solid state Li-ion batteries[J]. Journal of Inorganic Materials, 2019, 34(7): 694-702. DOI: 10.15541/jim20180512. | |
15 | POLCZYK T, NAGAI A. Covalent organic framework-based electrolytes for lithium solid-state batteries—Recent progress[J]. Batteries, 2023, 9(9): 469. DOI: 10.3390/batteries9090469. |
16 | 陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21-34. DOI: 10.14062/j.issn.0454-5648.2018.01.03. |
CHEN L, CHI S S, DONG Y, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 21-34. DOI: 10.14062/j.issn.0454-5648.2018.01.03. | |
17 | GAN X T, YANG Z H, SONG Z P. Solid-state batteries based on organic cathode materials[J]. Batteries & Supercaps, 2023, 6(6): 2300001. DOI: 10.1002/batt.202300001. |
18 | 杨源, 胡乃方, 金永成, 等. 富锂正极材料在全固态锂电池中的研究进展[J]. 物理学报, 2023, 72(11): 328-338. |
YANG Y, HU N F, JIN Y C, et al. Research advance of lithium-rich cathode materials in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2023, 72(11): 328-338. | |
19 | SCHLEM R, BURMEISTER C F, MICHALOWSKI P, et al. Energy storage materials for solid-state batteries: Design by mechanochemistry[J]. Advanced Energy Materials, 2021, 11(30): 2101022. DOI: 10.1002/aenm.202101022. |
20 | 徐红杰, 汪光辉, 苏钰杰, 等. "双碳" 背景下新能源固态电池材料理论设计与电池技术开发进展[J]. 过程工程学报, 2023, 23(7): 943-957. DOI: 10.12034/j.issn.1009-606X.223113. |
XU H J, WANG G H, SU Y J, et al. Theoretical design of new energy solid-state battery materials and development of battery technology under the background of carbon peaking and carbon neutrality[J]. The Chinese Journal of Process Engineering, 2023, 23(7): 943-957. DOI: 10.12034/j.issn.1009-606X.223113. | |
21 | HU S Y, HUANG C. Machine-learning approaches for the discovery of electrolyte materials for solid-state lithium batteries[J]. Batteries, 2023, 9(4): 228. DOI: 10.3390/batteries9040228. |
22 | BLOCK A, SONG C H. Exploring the characteristics of technological knowledge interaction dynamics in the field of solid-state batteries: A patent-based approach[J]. Journal of Cleaner Production, 2022, 353: 131689. DOI: 10.1016/j.jclepro.2022.131689. |
23 | 李茜, 郁亚娟, 张之琦, 等. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. DOI: 10.19799/j.cnki.2095-4239.2020.0205. |
LI X, YU Y J, ZHANG Z Q, et al. Advance and patent analysis of solid electrolyte in solid-state lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. DOI: 10.19799/j.cnki.2095-4239.2020.0205. | |
24 | 周洪, 魏凤, 吴永庆. 基于专利的无机固态锂电池电解质技术发展研究[J]. 储能科学与技术, 2020, 9(3): 1001-1007. DOI: 10.19799/j.cnki.2095-4239.2019.0244. |
ZHOU H, WEI F, WU Y Q. Research on the development of inorganic solid-state electrolyte for lithium battery based on patent analysis[J]. Energy Storage Science and Technology, 2020, 9(3): 1001-1007. DOI: 10.19799/j.cnki.2095-4239.2019.0244. | |
25 | 汤匀, 岳芳, 郭楷模, 等. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. DOI: 10.19799/j.cnki.2095-4239.2021.0350. |
TANG Y, YUE F, GUO K M, et al. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology[J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. DOI: 10.19799/j.cnki.2095-4239.2021.0350. | |
26 | 吴江, 王凯利, 董克, 等. 信息计量领域网络分析方法应用研究综述[J]. 情报学报, 2021, 40(10): 1118-1128. DOI: 10.3772/j.issn.1000-0135.2021.10.009. |
WU J, WANG K L, DONG K, et al. Review of application research on network analysis in informetrics[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(10): 1118-1128. DOI: 10.3772/j.issn.1000-0135.2021.10.009. | |
27 | BANITABA S N, SEMNANI D, HEYDARI-SOURESHJANI E, et al. Fabrication and performance evaluation of CuO, NiO, and Co3O4-embedded electrospun electrolytes: Suitable for lithium polymer solvent-free batteries[J]. Journal of Alloys and Compounds, 2022, 924: 166482. DOI: 10.1016/j.jallcom.2022.166482. |
28 | 王继锋, 屈涛, 陈微微, 等. Ni0.92Co0.05Mn0.03(OH)2三元前驱体结构对正极材料性能的影响[J]. 化工新型材料, 2023, 51(S2): 357-362. DOI: 10.19817/j.cnki.issn1006-3536.2023.S2.066. |
WANG J F, QU T, CHEN W W, et al. Effect of ternary precursor structure of Ni0.92Co0.05Mn0.03(OH)2 on properties of cathode materials[J]. New Chemical Materials, 2023, 51(S2): 357-362. DOI: 10.19817/j.cnki.issn1006-3536.2023.S2.066. | |
29 | BORDES A, EOM K, FULLER T F. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources, 2014, 257: 163-169. DOI: 10.1016/j.jpowsour.2013.12.144. |
30 | LU J Y, LI Y. Perovskite‐type Li‐ion solid electrolytes: A review[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 9736-9754. DOI: 10.1007/s10854-021-05699-8. |
31 | 高鹏, 张珊, 贲留斌, 等. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. DOI: 10.19799/j.cnki.2095-4239.2020.0109. |
GAO P, ZHANG S, BEN L B, et al. Application of niobium in lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. DOI: 10.19799/j.cnki.2095-4239.2020.0109. | |
32 | BARNES P, ZUO Y X, DIXON K, et al. Electrochemically induced amorphous-to-rock-salt phase transformation in niobium oxide electrode for Li-ion batteries[J]. Nature Materials, 2022, 21(7): 795-803. DOI: 10.1038/s41563-022-01242-0. |
[1] | Xiang LI, Dezhong LIU, Kai YUAN, Dapeng CHEN. Solid-state electrolyte for low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. |
[2] | Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. |
[3] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[4] | Xiaoyu SHEN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Junfeg HAO, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2022 to Jan. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(3): 639-653. |
[5] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[6] | Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022) [J]. Energy Storage Science and Technology, 2023, 12(1): 1-15. |
[7] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[8] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[9] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[10] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[11] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[12] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
[13] | Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(3): 958-973. |
[14] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Dec 1, 2020 to Jan 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(2): 393-407. |
[15] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||