Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 725-741.doi: 10.19799/j.cnki.2095-4239.2024.0142
Previous Articles Next Articles
Qiangfu SUN(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2024-02-22
Online:
2024-03-28
Published:
2024-03-28
Contact:
Xuejie HUANG
E-mail:sunqiangfu22@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024)[J]. Energy Storage Science and Technology, 2024, 13(3): 725-741.
1 | GUO F, HUANG G S, ZHANG W C, et al. Lithium battery state-of-health estimation based on sample data generation and temporal convolutional neural network[J]. Energies, 2023, 16(24): 8010. |
2 | FAN F X, ZHENG R X, ZENG T, et al. Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 477: 147181. |
3 | KAM D, CHOI M, PARK D, et al. Unveiling the potential of surface-beneath region doping by induced-diffusion in nickel-rich single crystal cathode for high-performance lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 472: 144885. |
4 | HUANG H, ZHU H J, GAO J, et al. Grain-growth inhibitor with three-section-sintering for highly dispersed single-crystal NCM90 cubes[J]. Angewandte Chemie (International Ed in English), 2024, 63(2): e202314457. |
5 | TAN Z L, CHEN X X, LI Y J, et al. Enabling superior cycling stability of LiNi0.9Co0.05Mn0.05O2 with controllable internal strain[J]. Advanced Functional Materials, 2023, 33(26): 2215123. |
6 | WU F, SHI Q, CHEN L, et al. New insights into dry-coating-processed surface engineering enabling structurally and thermally stable high-performance Ni-rich cathode materials for lithium ion batteries[J]. Chemical Engineering Journal, 2023, 470: 144045. |
7 | TAN X H, CHEN Z F, LIU T C, et al. Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes[J]. Advanced Materials, 2023, 35(32): e2301096. |
8 | SHI H C, ZHANG H W, WEN Z P, et al. Storage performance and structure degradation mechanism of single-crystal Ni-rich material[J]. ACS Applied Energy Materials, 2024, 7(1): 353-362. |
9 | ZHAO W G, WANG K, FAN X M, et al. Quantifying degradation parameters of single-crystalline Ni-rich cathodes in lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(32): e202305281. |
10 | LI H, LI Z, LIU J L, et al. Improving the electrochemical performance of co-free Li-rich layered oxides via a dual modification of Nb5+ doping and oxygen vacancy regulation[J]. ACS Applied Energy Materials, 2023, 6(21): 10773-10783. |
11 | HAO Z K, SUN H X, NI Y X, et al. Suppressing bulk strain and surface O2 release in Li-rich cathodes by just tuning the Li content[J]. Advanced Materials, 2024, 36(1): e2307617. |
12 | JIANG Y S, YU F D, KE W, et al. Accessible Li percolation and extended oxygen oxidation boundary in rocksalt-like cathode enabled by initial Li-deficient nanostructure[J]. Advanced Functional Materials, 2023, 33(31): doi: 10.1002/ADFM.202213615. |
13 | OU Y J, YANG L T, GAO J Z, et al. Absolutely-zero-expansion behavior enables ultra-long life for stationary energy storage[J]. Advanced Functional Materials, 2023, 33(47): 2305329. |
14 | WANG F, MAO J, ZHAO Y. Crystal engineering of silica anode achieving intrinsic zero-strain[J]. Advanced Materials, 2023, 35(51): e2307908. |
15 | WANG Y X, YANG X F, YUAN Y, et al. N-rich solid electrolyte interface constructed in situ via a binder strategy for highly stable silicon anode[J]. Advanced Functional Materials, 2023, 33(34): 2301716. |
16 | BAI S, BAO W, QIAN K, et al. Elucidating the role of prelithiation in Si-based anodes for interface stabilization[J]. Advanced Energy Materials, 2023, 13(28): 2301041. |
17 | HUANG S Z, WU Z B, JOHANNESSEN B, et al. Interfacial friction enabling≤20 μm thin free-standing lithium strips for lithium metal batteries[J]. Nature Communications, 2023, 14: 5678. |
18 | YUAN X T, LIU B, MECKLENBURG M, et al. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation[J]. Nature, 2023, 620: 86-91. |
19 | LONG K C, HUANG S Z, WANG H, et al. Green mechanochemical Li foil surface reconstruction toward long-life Li-metal pouch cells[J]. Energy & Environmental Science, 2024, 17(1): 260-273. |
20 | CHEN C, ZHANG J M, HU B R, et al. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode[J]. Nature Communications, 2023, 14: 4018. |
21 | CHEN Y Y, CHEN W, TONG M Y, et al. Solution combustion synthesis of submicron-sized titanium niobium oxide anodes for high-rate and ultrastable lithium-ion batteries[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2024, 40(1): 975-983. |
22 | LI X N, KIM J T, LUO J, et al. Structural regulation of halide superionic conductors for all-solid-state lithium batteries[J]. Nature Communications, 2024, 15: 53. |
23 | HWANG S H, SEO S D, KIM D W. A novel time-saving synthesis approach for Li-argyrodite superionic conductor[J]. Advanced Science, 2023, 10(22): e2301707. |
24 | 张志伟, 王海燕, 张琦, 等. 废旧锂电池正极材料的回收再利用研究[J]. 功能材料, 2023, 54(9): 9203-9210. |
ZHANG Z W, WANG H Y, ZHANG Q, et al. Investigation the recycling and reusing of the waste lithium-ion battery cathode materials[J]. Journal of Functional Materials, 2023, 54(9): 9203-9210. | |
25 | YAMAGUCHI H, KOBAYASHI K, HIROI S, et al. Structural analysis and ionic conduction mechanism of sulfide-based solid electrolytes doped with Br[J]. Scientific Reports, 2023, 13: 16063. |
26 | SONG Z H, WANG L, JIANG W Y, et al. "like compatible like" strategy designing strong cathode-electrolyte interface quasi-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(4): 2302688. |
27 | ZHOU S, WANG X, XU Z L, et al. Rapid self-healing, highly conductive and near-single-ion conducting gel polymer electrolytes based on dynamic boronic ester bonds for high-safety lithium metal batteries[J]. Journal of Energy Storage, 2024, 75: doi: 10.1016/j.est.2023.109712. |
28 | ZHANG W R, KOVERGA V, LIU S F, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024. |
29 | FERRER-NICOMEDES S, MORMENEO-SEGARRA A, VICENTE-AGUT N, et al. Introducing an ionic conductive matrix to the cold-sintered Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte to enhance the electrical properties[J]. Journal of Power Sources, 2023, 581: 233494. |
30 | RAHMAN M M, TAN S, YANG Y, et al. An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries[J]. Nature Communications, 2023, 14: 8414. |
31 | STEHLE P, RUTZ D, BAZZOUN A M, et al. The optimal amount of lithium difluorophosphate as an additive for Si-dominant anodes in an application-oriented setup[J]. ChemSusChem, 2024, 17(3): e202301153. |
32 | WANG X L, ZENG Z Q, ZHANG H, et al. 1, 3, 5-Trifluorobenzene, an electrolyte additive with high thermal stability and superior film-forming properties for lithium-ion batteries[J]. Chemical Communications, 2023, 59(86): 12919-12922. |
33 | ZHUANG X C, ZHANG S H, CUI Z L, et al. Interphase regulation by multifunctional additive empowering high energy lithium-ion batteries with enhanced cycle life and thermal safety[J]. Angewandte Chemie (International Ed in English), 2024, 63(5): e202315710. |
34 | REN Z Q, QIU H Y, FAN C, et al. Delicately designed cyano-siloxane as multifunctional additive enabling high voltage LiNi0.9Co0.05Mn0.05O2/graphite full cell with long cycle life at 50 ℃[J]. Advanced Functional Materials, 2023, 33(36): 2302411. |
35 | CHEN Q R, CHEN M, XIE Z, et al. Constructing a highly robust interface film for enhancing rate performance of graphite anode via a novel electrolyte additive[J]. The Journal of Physical Chemistry Letters, 2023, 14(49): 10863-10869. |
36 | YU Y K, KOH H, ZHANG Z S, et al. Kinetic pathways of fast lithium transport in solid electrolyte interphases with discrete inorganic components[J]. Energy & Environmental Science, 2023, 16(12): 5904-5915. |
37 | TIAN Y F, TAN S J, YANG C P, et al. Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode[J]. Nature Communications, 2023, 14: 7247. |
38 | WU D X, ZHU C L, WANG H P, et al. Mechanically and thermally stable cathode electrolyte interphase enables high-temperature, high-voltage Li||LiCoO2 batteries[J]. Angewandte Chemie (International Ed in English), 2024, 63(7): e202315608. |
39 | JAMAL A, SALIAN G D, MATHEW A, et al. Tris(trimethylsilyl) phosphite and lithium difluoro(oxalato)borate as electrolyte additives for LiNi0.5Mn1.5O4-graphite lithium-ion batteries[J]. ChemElectroChem, 2023, 10(16): doi: 10.1002/celc.202300139. |
40 | WANG Y K, LI Z M, XIE W W, et al. Asymmetric solvents regulated crystallization-limited electrolytes for all-climate lithium metal batteries[J]. Angewandte Chemie (International Ed in English), 2024, 63(6): e202310905. |
41 | CHEN Y Q, HE Q, ZHAO Y, et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery[J]. Nature Communications, 2023, 14: 8326. |
42 | LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (-70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): e2308881. |
43 | LEE J N, JEON A R, LEE H J, et al. Molecularly engineered linear organic carbonates as practically viable nonflammable electrolytes for safe Li-ion batteries[J]. Energy & Environmental Science, 2023, 16(7): 2924-2933. |
44 | QIN M S, ZENG Z Q, WU Q, et al. 1, 3, 5-Trifluorobenzene endorsed EC-free electrolyte for high-voltage and wide-temperature lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 85: 49-57. |
45 | ZHANG X Z, XU P, DUAN J N, et al. A dicarbonate solvent electrolyte for high performance 5 V-Class lithium-based batteries[J]. Nature Communications, 2024, 15: 536. |
46 | WANG K J, LIANG Z T, WENG S T, et al. Surface engineering strategy enables 4.5 V sulfide-based all-solid-state batteries with high cathode loading and long cycle life[J]. ACS Energy Letters, 2023, 8(8): 3450-3459. |
47 | SU Y, LIU X S, YAN H, et al. Assembly of an elastic & sticky interfacial layer for sulfide-based all-solid-state batteries[J]. Nano Energy, 2023, 113: 108572. |
48 | ZHANG M H, ZHANG S J, LI M, et al. Self-sacrificing reductive interphase for robust and high-performance sulfide-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(5): 2303647. |
49 | TIAN R Z, WANG Z Y, LIAO J G, et al. High-voltage stability of small-size single crystal Ni-rich layered cathode for sulfide-based all-solid-state lithium battery at 4.5 V[J]. Advanced Energy Materials, 2023, 13(26): 2300850. |
50 | LIU P F, MI X, ZHAO H H, et al. Effects of incineration and pyrolysis on removal of organics and liberation of cathode active materials derived from spent ternary lithium-ion batteries[J]. Waste Management, 2023, 169: 342-350. |
51 | YAO X M, CHEN S M, WANG C H, et al. Interface welding via thermal pulse sintering to enable 4.6V solid-state batteries[J]. Advanced Energy Materials, 2023: 2303422. |
52 | ASAKURA T, INAOKA T, HOTEHAMA C, et al. Stack pressure dependence of Li stripping/plating performance in all-solid-state Li metal cells containing sulfide glass electrolytes[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 31403-31408. |
53 | ZHANG S X, CHEN J C, ZHU C Y, et al. Robust all-solid-state lithium metal batteries enabled by a composite lithium anode with improved bulk Li diffusion kinetics properties[J]. ACS Nano, 2023, 17(23): 24290-24298. |
54 | YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nature Energy, 2023, 8: 800-813. |
55 | YE L H, LU Y, WANG Y C, et al. Fast cycling of lithium metal in solid-state batteries by constriction-susceptible anode materials[J]. Nature Materials, 2024, 23: 244-251. |
56 | JUN S, LEE G, SONG Y B, et al. Interlayer engineering and prelithiation: Empowering Si anodes for low-pressure-operating all-solid-state batteries[J]. Small, 2024: e2309437. |
57 | LIU T, ZHANG L, LI Y Y, et al. PVDF-HFP via localized iodization as interface layer for all-solid-state lithium batteries with Li6PS5Cl films[J]. Small, 2023: e2307260. |
58 | WANG Z Y, XIA J L, JI X, et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries[J]. Nature Energy, 2024. |
59 | GRANDJEAN M, PICHARDO M, BIECHER Y, et al. Matching silicon-based anodes with sulfide-based solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2023, 580: 233386. |
60 | ZHANG J, LIU T, YUAN Q, et al. Low volume-expansion, insertion-type layered silicate hierarchical structure for superior storage of Li, Na, K[J]. Advanced Functional Materials, 2023, 33(33): 2301914. |
61 | ZHENG C J, LU Y, CHANG Q, et al. High-performance garnet-type solid-state lithium metal batteries enabled by scalable elastic and Li+-conducting interlayer[J]. Advanced Functional Materials, 2023, 33(33): 2302729. |
62 | LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(3): e2307768. |
63 | TAKLU B W, NIKODIMOS Y, BEZABH H K, et al. Air-stable iodized-oxychloride argyrodite sulfide and anionic swap on the practical potential window for all-solid-state lithium-metal batteries[J]. Nano Energy, 2023, 112: 108471. |
64 | KIM M, KIM M J, OH Y S, et al. Design strategies of Li-Si alloy anode for mitigating chemo-mechanical degradation in sulfide-based all-solid-state batteries[J]. Advanced Science, 2023, 10(24): e2301381. |
65 | HU A J, CHEN W, LI F, et al. Nonflammable polyfluorides-anchored quasi-solid electrolytes for ultra-safe anode-free lithium pouch cells without thermal runaway[J]. Advanced Materials, 2023, 35(51): e2304762. |
66 | ALEXANDER G V, SHI C M, O'NEILL J, et al. Extreme lithium-metal cycling enabled by a mixed ion-and electron-conducting garnet three-dimensional architecture[J]. Nature Materials, 2023, 22: 1136-1143. |
67 | LI J H, WANG Z Y, SHI K X, et al. Nanoreactors encapsulating built-in electric field as a "bridge" for Li-S batteries: Directional migration and rapid conversion of polysulfides[J]. Advanced Energy Materials, 2024, 14(9): 2303546. |
68 | GAO X Y, TIAN J X, CHENG S J, et al. A low-strain cathode by sp-carbon induced conversion in multi-level structure of graphdiyne[J]. Angewandte Chemie (International Ed in English), 2023, 62(33): e202304491. |
69 | ZHONG H Y, SU Y, WU Y Q, et al. Long-life and high-loading all-solid-state Li-S batteries enabled by acetylene black with dispersed co-N4 as single atom catalyst[J]. Advanced Energy Materials, 2023, 13(25): 2300767. |
70 | KIM J T, RAO A, NIE H Y, et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life[J]. Nature Communications, 2023, 14: 6404. |
71 | YU P W, SUN S R, SUN C H, et al. Active regulation volume change of micrometer-size Li2S cathode with high materials utilization for all-solid-state Li/S batteries through an interfacial redox mediator[J]. Advanced Functional Materials, 2024, 34(8): 2306939. |
72 | FUJITA Y, SAKUDA A, HASEGAWA Y, et al. High capacity Li2S-Li2O-LiI positive electrodes with nanoscale ion-conduction pathways for all-solid-state Li/S batteries[J]. Small, 2023, 19(36): doi: 10.1002/SMLL.202302179. |
73 | FAN Q Q, SI Y B, ZHU F L, et al. Activation of bulk Li2S as cathode material for lithium-sulfur batteries through organochalcogenide-based redox mediation chemistry[J]. Angewandte Chemie, 2023, 135(32): e202306705. |
74 | LAI T X, BHARGAV A, MANTHIRAM A. Lithium tritelluride as an electrolyte additive for stabilizing lithium deposition and enhancing sulfur utilization in anode-free lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(43): 2304568. |
75 | ANH H H, DUKJOON K. High energy and sustainable solid-state lithium-sulfur battery enabled by the force-bearing cathode and multifunctional double-layer hybrid solid electrolyte[J]. Chemical Engineering Journal, 2023, 474: doi: 10.1016/J.CEJ.2023.145982. |
76 | SON D, PARK H, LIM W G, et al. Ultrathin mixed ionic-electronic conducting interlayer via the solution shearing technique for high-performance lithium-sulfur batteries[J]. ACS Nano, 2023, 17(24): 25507-25518. |
77 | LV Z W, LIU J, LI C, et al. High-areal-capacity all-solid-state Li-S battery enabled by dry process technology[J]. eTransportation, 2024, 19: 100298. |
78 | SADAN M K, LIAN G J, SMITH R M, et al. Co, Ni-free ultrathick free-standing dry electrodes for sustainable lithium-ion batteries[J]. Acs Applied Energy Materials, 2023, 6(24): 12166-12171. |
79 | PARK N R, LI Y, YAO W, et al. Understanding the role of lithium borate as the surface coating on high voltage single crystal LiNi0.5Mn1.5O4[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202312091. |
80 | KÜNNE S, HESPER J M, LEIN T, et al. Hybrid high-voltage LiNi0.5Mn1.5O4/graphite cathodes enabling rechargeable batteries with simultaneous anion- and cation storage[J]. Batteries & Supercaps, 2023, 6(9): 2300284. |
81 | MOHANTY D P, MANN J B, PAYATHUPARAMBIL V N, et al. Single-step deformation processing of ultrathin lithium foil and strip[J]. Advanced Materials Technologies, 2024, 9(4): doi: 10.1002/admt.202301315. |
82 | BINDUMADHAVAN K, SURENDRAN V, SURIYAKUMAR S, et al. Dual-functional trisiloxane as binder additive for high volume expansion Li-ion battery electrodes[J]. Journal of Energy Storage, 2024, 77: 109931. |
83 | FENG Y, ZHONG B D, ZHANG R C, et al. Taming active-ion crosstalk by targeted ion sifter toward high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(45): 2302295. |
84 | CHEN X P, YUAN L, YAN S X, et al. Self-activation of Ferro-chemistry based advanced oxidation process towards in situ recycling of spent LiFePO4 batteries[J]. Chemical Engineering Journal, 2023, 471: 144343. |
85 | LIU S Z, WEST P J, ZHONG H, et al. Origin of phase separation in Ni-rich layered oxide cathode materials during electrochemical cycling[J]. Chemistry of Materials, 2023, 35(21): 8857-8871. |
86 | RYNEARSON L, ANTOLINI C, JAYAWARDANA C, et al. Speciation of transition metal dissolution in electrolyte from common cathode materials[J]. Angewandte Chemie (International Ed in English), 2024, 63(5): e202317109. |
87 | PÁEZ FAJARDO G J, FIAMEGKOU E, GOTT J A, et al. Synergistic degradation mechanism in single crystal Ni-rich NMC// graphite cells[J]. ACS Energy Letters, 2023, 8(12): 5025-5031. |
88 | KOIRALA K P, JIANG L, PATIL S, et al. Direct mapping of fluorine in cation disordered rocksalt cathodes[J]. ACS Energy Letters, 2024, 9(1): 10-16. |
89 | SANDOVAL S E, LEWIS J A, VISHNUGOPI B S, et al. Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries[J]. Joule, 2023, 7(9): 2054-2073. |
90 | CHENG D Y, TRAN K, RAO S, et al. Manufacturing scale-up of anodeless solid-state lithium thin-film batteries for high volumetric energy density applications[J]. ACS Energy Letters, 2023, 8(11): 4768-4774. |
91 | SIM R, SU L S, DOLOCAN A, et al. Delineating the impact of transition-metal crossover on solid-electrolyte interphase formation with ion mass spectrometry[J]. Advanced Materials, 2023: e2311573. |
92 | AKTEKIN B, RIEGGER L M, OTTO S K, et al. SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis[J]. Nature Communications, 2023, 14: 6946. |
93 | LU X K, LAGNONI M, BERTEI A, et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling[J]. Nature Communications, 2023, 14: 5127. |
94 | KÖBBING L, LATZ A, HORSTMANN B. Voltage hysteresis of silicon nanoparticles: Chemo-mechanical particle-SEI model[J]. Advanced Functional Materials, 2024, 34(7): 2308818. |
95 | HASEGAWA G, KUWATA N, OHNISHI T, et al. Visualization and evaluation of lithium diffusion at grain boundaries in Li0.29La0.57TiO3 solid electrolytes using secondary ion mass spectrometry[J]. Journal of Materials Chemistry A, 2024, 12(2): 731-738. |
96 | WANG C H, AYKOL M, MUELLER T. Nature of the amorphous-amorphous interfaces in solid-state batteries revealed using machine-learned interatomic potentials[J]. Chemistry of Materials, 2023, 35(16): 6346-6356. |
97 | REYNOLDS C, NIRI M F, HIDALGO M, et al. Impact of formulation and slurry properties on lithium‐ion electrode manufacturing[J]. Batteries & Supercaps, 2023: doi: 10.1002/batt.202300396. |
98 | GRABE S, DENT M, ZHANG T, et al. A physicochemical model-based digital twin of Li-S batteries to elucidate the effects of cathode microstructure and evaluate different microstructures[J]. Journal of Power Sources, 2023, 580: 233470. |
99 | CLAUSNITZER M, DANNER T, PRIFLING B, et al. Influence of electrode structuring techniques on the performance of all-solid-state batteries[J]. Batteries & Supercaps, 2024: 2300522. |
100 | FU K, LI X Y, SUN K, et al. Clarifying the limiting factor of material utilization in thick electrodes of lithium-ion batteries[J]. Journal of Power Sources, 2024, 591: 233880. |
[1] | Zhaokai YUAN, Qiuhua FAN, Dongqing WANG, Tianmin SUN. State of charge estimation for lithium-ion batteries under multiple temperatures based on the MIAEK algorithm [J]. Energy Storage Science and Technology, 2024, 13(2): 680-690. |
[2] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[3] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[4] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
[5] | Panqing WANG, Yanjie HUANG, Yipeng HE, Qiheng CHEN, Ti YIN, Weihao CHEN, Lei TAN, Tianxiang NING, Kangyu ZOU, Lingjun LI. Research progress on the surface lithium residue of high-nickel cathode materials [J]. Energy Storage Science and Technology, 2024, 13(1): 92-112. |
[6] | Shuyuan CHEN, Chen CHENG, Xiao XIA, Huanxin JU, Liang ZHANG. Research progress in the X-ray spectroscopy investigation of cathode materials for high-energy-density secondary batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 113-129. |
[7] | Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2023 to Nov. 30, 2023) [J]. Energy Storage Science and Technology, 2024, 13(1): 252-269. |
[8] | Hong LIU, Junxia LI. Modeling and simulation research on energy storage system distribution network operation of high specific energy secondary lithium battery electrode materials [J]. Energy Storage Science and Technology, 2024, 13(1): 342-344. |
[9] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
[10] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(9): 3003-3018. |
[11] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[12] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[13] | Ding ZHANG, Zixian YE, Zhenming LIU, Qun YI, Lijuan SHI, Huijuan GUO, Yi HUANG, Li WANG, Xiangming HE. Research progress of black phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490. |
[14] | Ronghan QIAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(7): 2333-2348. |
[15] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||