Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 270-278.doi: 10.19799/j.cnki.2095-4239.2023.0524
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shun LI1,2(), Jianguo HUANG2, Guijin HE2()
Received:
2023-08-04
Revised:
2023-08-27
Online:
2024-01-05
Published:
2024-01-22
Contact:
Guijin HE
E-mail:smoothlee2013@zju.edu.cn;guikinghe@zju.edu.cn
CLC Number:
Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 270-278.
1 | LI Z, GUAN B Y, ZHANG J T, et al. A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries[J]. Joule, 2017, 1(3): 576-587. |
2 | 谭超, 王超. 功能化氧化石墨烯作为锂硫电池正极硫载体的性能研究[J]. 储能科学与技术, 2023, 12(4): 1025-1033. |
TAN C, WANG C. Study on the performance of functionalized graphene oxide as positive sulfur carrier for lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2023, 12(4): 1025-1033. | |
3 | 王小飞, 蓝大为, 张道明, 等. 基于锂掺杂分子筛改性隔膜的高性能锂硫电池[J]. 储能科学与技术, 2022, 11(11): 3447-3454. |
WANG X F, LAN D W, ZHANG D M, et al. High-performance lithium-sulfur batteries enabled by a separator modified by lithium-doped zeolite[J]. Energy Storage Science and Technology, 2022, 11(11): 3447-3454. | |
4 | HU B, XU J E, FAN Z J, et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes[J]. Advanced Energy Materials, 2023, 13(10): 2203540. |
5 | 沈炎宾, 陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报, 2020, 65(S1): 117-126. |
SHEN Y B, CHEN L W. Materials electrochemistry for high energy density power batteries[J]. Chinese Science Bulletin, 2020, 65(S1): 117-126. | |
6 | 张顺, 曾芳磊, 李宁, 等. 高阻燃硫正极的制备及其性能[J]. 储能科学与技术, 2023, 12(4): 1018-1024. |
ZHANG S, ZENG F L, LI N, et al. Study on the preparation and properties of high-flame retardant sulfur cathode[J]. Energy Storage Science and Technology, 2023, 12(4): 1018-1024. | |
7 | KANNAN S K, JOSEPH J, JOSEPH M G. Review and perspectives on advanced binder designs incorporating multifunctionalities for lithium-sulfur batteries[J]. Energy & Fuels, 2023, 37(9): 6302-6322. |
8 | SEH Z W, SUN Y M, ZHANG Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634. |
9 | FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823. |
10 | 石凯, 安德成, 贺艳兵, 等. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
SHI K, AN D C, HE Y B, et al. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes[J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. | |
11 | KIM A, OH S H, ADHIKARI A, et al. Recent advances in modified commercial separators for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 7833-7866. |
12 | PENG H J, ZHANG Z W, HUANG J Q, et al. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(43): 9551-9558. |
13 | ZHOU J J, GUO Y S, LIANG C D, et al. Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery[J]. Electrochimica Acta, 2018, 273: 127-135. |
14 | XIAN C X, WANG Q Y, XIA Y, et al. Solid-state electrolytes in lithium-sulfur batteries: Latest progresses and prospects[J]. Small, 2023, 19(24): e2208164. |
15 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. |
16 | MANTHIRAM A, CHUNG S H, ZU C X. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006. |
17 | LIANG C D, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730. |
18 | XU T, SONG J X, GORDIN M L, et al. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 11355-11362. |
19 | JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011, 50(26): 5904-5908. |
20 | ZHANG C F, WU H B, YUAN C Z, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(38): 9592-9595. |
21 | XING L B, XI K, LI Q Y, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303: 22-28. |
22 | XIA Q Q, LIU Y Z, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry, 2018, 20(12): 2711-2721. |
23 | PENG Y, NAIR S S, CHEN H Y, et al. Effects of lignin content on mechanical and thermal properties of polypropylene composites reinforced with micro particles of spray dried cellulose nanofibrils[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11078-11086. |
24 | SHEN X J, ZHANG C F, HAN B X, et al. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: Road to the carbon-neutral future[J]. Chemical Society Reviews, 2022, 51(5): 1608-1628. |
25 | BEAUCAMP A, CULEBRAS M, COLLINS M N. Sustainable mesoporous carbon nanostructures derived from lignin for early detection of glucose[J]. Green Chemistry, 2021, 23(15): 5696-5705. |
26 | LIU T, SUN S M, SONG W, et al. A lightweight and binder-free electrode enabled by lignin fibers@carbon-nanotubes and graphene for ultrastable lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(46): 23486-23494. |
27 | YEON J S, PARK S H, SUK J, et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382: 122946. |
28 | SCHUSTER J, HE G A, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3591-3595. |
29 | LI S, LIN Z H, HE G J, et al. Cellulose substance derived nanofibrous activated carbon as a sulfur host for lithium-sulfur batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125129. |
30 | GUPTA S, WEINER B R, MORELL G. Ex situ spectroscopic ellipsometry and Raman spectroscopy investigations of chemical vapor deposited sulfur incorporated nanocrystalline carbon thin films[J]. Journal of Applied Physics, 2002, 92(9): 5457-5462. |
31 | YANG J, WANG S Y, MA Z P, et al. Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium-sulfur batteries[J]. Electrochimica Acta, 2015, 159: 8-15. |
32 | YU F Q, LI Y L, JIA M, et al. Elaborate construction and electrochemical properties of lignin-derived macro-/ micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: The effect of sulfur-loading time[J]. Journal of Alloys and Compounds, 2017, 709: 677-685. |
33 | TANG C, ZHANG Q A, ZHAO M Q, et al. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(35): 6100-6105. |
34 | GU X X, WANG Y Z, LAI C, et al. Microporous bamboo biochar for lithium-sulfur batteries[J]. Nano Research, 2015, 8(1): 129-139. |
[1] | Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. |
[2] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[3] | Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416. |
[4] | Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. |
[5] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[6] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[7] | Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB [J]. Energy Storage Science and Technology, 2024, 13(2): 381-389. |
[8] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[9] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
[10] | Panqing WANG, Yanjie HUANG, Yipeng HE, Qiheng CHEN, Ti YIN, Weihao CHEN, Lei TAN, Tianxiang NING, Kangyu ZOU, Lingjun LI. Research progress on the surface lithium residue of high-nickel cathode materials [J]. Energy Storage Science and Technology, 2024, 13(1): 92-112. |
[11] | Shuyuan CHEN, Chen CHENG, Xiao XIA, Huanxin JU, Liang ZHANG. Research progress in the X-ray spectroscopy investigation of cathode materials for high-energy-density secondary batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 113-129. |
[12] | Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2023 to Nov. 30, 2023) [J]. Energy Storage Science and Technology, 2024, 13(1): 252-269. |
[13] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(9): 3003-3018. |
[14] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[15] | Ronghan QIAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Junfeng HAO, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2023 to May 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(7): 2333-2348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||