Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1398-1416.doi: 10.19799/j.cnki.2095-4239.2024.0336
• Research Highlight • Previous Articles Next Articles
Jing ZHU(), Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2024-04-18
Online:
2024-05-28
Published:
2024-05-28
Contact:
Xuejie HUANG
E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024)[J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416.
1 | BERK R B, BEIERLING T, METZGER L, et al. Investigation of the particle formation mechanism during coprecipitation of Ni-rich hydroxide precursor for Li-ion cathode active material[J]. Journal of the Electrochemical Society, 2023, 170(11): 110513. |
2 | JIANG W, ZHU X X, LIU Y W, et al. Mechanically reinforced Ni-rich cathodes for High-Power and Long-Life All-Solid-State batteries[J]. Chemical Engineering Science, 2024, doi: 10.1016/j.ces.2024.119775. |
3 | PARK G T, HAN S M, RYU J H, et al. Opening a new horizon for the facile synthesis of long-life Ni-rich layered cathode[J]. ACS Energy Letters, 2023, 8(9): 3784-3792. |
4 | ZUO J X, WANG J, DUAN R X, et al. Grain binding derived reinforced interfacial mechanical behavior of Ni-rich layered cathode materials[J]. Nano Energy, 2024, doi: 10.1016/j.nanoen.2023.109214. |
5 | HWANG J, LEE S, KIM S, et al. Uniform and multifunctional PEI‐POSS/carbon encapsulation for high-rate performance and surface stabilization of nickel‐rich layered cathodes in lithium‐ion batteries[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm.202304614. |
6 | HOU Y K, LI C, REN D, et al. Enabling electrochemical-mechanical robustness of ultra-high Ni cathode via self-supported primary-grain-alignment strategy[J]. Advanced Science, 2023, doi: 10.1002/advs.202306347. |
7 | LI F K, LIU Z B, LIAO C J, et al. Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries[J]. Acs Energy Letters, 2023, 8(11): 4903-4914. |
8 | DAI H D, GOMES L, MAXWELL D S, et al. Exploring the role of an electrolyte additive in suppressing surface reconstruction of a Ni-rich NMC cathode at ultrahigh voltage via enhanced in situ and operando characterization methods[J]. ACS applied materials & interfaces, 2024, 16(7): 8639-8654. |
9 | KIM M, LEE W, LEE E, et al. Decoupling the capacity fading in Ni-rich layered materials during high-temperature cycling in the full-cell system[J]. Advanced Energy Materials, 2023, 13(41): 2302209. |
10 | PARK N Y, KIM M C, HAN S M, et al. Mechanism behind the loss of fast charging capability in nickel-rich cathode materials[J]. Angewandte Chemie (International Ed in English), 2024, 63(12): e202319707. |
11 | DAI Z S, LI Z J, CHEN R J, et al. Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries[J]. Nature Communications, 2023, 14: 8087. |
12 | SHI X M, JIA Z Z, WANG D H, et al. Achieving high safety for lithium-ion batteries by optimizing electron and phonon transport[J]. ACS Energy Letters, 2023, 8(11): 4540-4546. |
13 | LIU Y Y, ZHANG C Y, LIN L S, et al. Intrinsic highly conductive and mechanically robust Li-rich cathode materials enabled by microstructure engineering for enhanced electrochemical properties[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202308494. |
14 | SU Y, ZHAO J, DONG J, et al. Atomic pins bridging integrated surface to assist high-rate stability for Co-free Li-rich cathode[J]. Chemical Engineering Journal, 2023, doi: 10.1016/j.cej.2023.145991. |
15 | LUO D, ZHU H, XIA Y, et al. A Li-rich layered oxide cathode with negligible voltage decay[J]. Nature Energy, 2023, 8: 1078-1087. |
16 | JANG H Y, EUM D, CHO J, et al. Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes[J]. Nature Communications, 2024, 15: 1288. |
17 | MARTENS I, VOSTROV N, MIROLO M, et al. Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel[J]. Nature Communications, 2023, 14: 6975. |
18 | CHEN K, BARAI P, KAHVECIOGLU O, et al. Cobalt-free composite-structured cathodes with lithium-stoichiometry control for sustainable lithium-ion batteries[J]. Nature Communications, 2024, 15: 430. |
19 | GAO Y, FAN L, ZHOU R, et al. High-performance silicon-rich microparticle anodes for lithium-ion batteries enabled by internal stress mitigation[J]. Nano-Micro Letters, 2023, 15(1): 222. |
20 | LIU W, SU S, WANG Y, et al. Constructing a stable conductive network for high-performance silicon-based anode in lithium-ion batteries[J]. ACS applied materials & interfaces, 2024, 16(8): 10703-10713. |
21 | WANG F, MAO J, ZHAO Y. Crystal engineering of silica anode achieving intrinsic zero‐strain[J]. Advanced Materials, 2023, doi: 10.1002/adma.202307908. |
22 | HWANG J H, KIM E, LIM E Y, et al. A multifunctional interlocked binder with synergistic in situ covalent and hydrogen bonding for high-performance Si anode in Li-ion batteries[J]. Advanced Science, 2023, 10(30): e2302144. |
23 | HAN D Y, HAN I K, JANG H Y, et al. Interface engineering of Si-based anodes with fluorinated binder enabling lean-additive lithium-ion batteries[J]. Energy Storage Materials, 2024, doi: 10.1016/j.ensm.2024.103176. |
24 | RYOSUKE S, MINORU I, TAKAYUKI D. Nanostructure of Si-Sn thick-film electrodes to improve the energy density of oxide-based all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2023, 170(11): doi: 10.1149/1945-7111/ad06ea. |
25 | KANG Q, LI Y, ZHUANG Z C, et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries[J]. Advanced Materials, 2024, 36(18): e2308799. |
26 | CHANG C S, ZHANG M T, LAO Z J, et al. Achieving stable lithium anodes through leveraging inevitable stress variations via adaptive piezoelectric effect[J]. Advanced Materials, 2024: e2313525. |
27 | KANG Q, ZHUANG Z C, LIU Y J, et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries[J]. Advanced Materials, 2023, 35(38): e2303460. |
28 | SERBESSA G G, TAKLU B W, NIKODIMOS Y, et al. Boosting the interfacial stability of the Li6PS5Cl electrolyte with a Li anode via in situ formation of a LiF-rich SEI layer and a ductile sulfide composite solid electrolyte[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10832-10844. |
29 | SHEN Z Z, ZHANG X S, WAN J, et al. Nanoscale visualization of lithium plating/stripping tuned by on-site formed solid electrolyte interphase in all-solid-state lithium-metal batteries[J]. Angewandte Chemie (International Ed in English), 2024, 63(13): e202316837. |
30 | LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(3): e2307768. |
31 | HAO W, BASU S, HWANG G S. First-principles prediction of reaction-induced structural evolution at the interface between lithium metal and sulfide electrolytes[J]. Journal of Physical Chemistry C, 2024, doi: 10.1021/acs.jpcc.4c00327. |
32 | HAO H C, LIU Y J, GREENE S M, et al. Tuned reactivity at the lithium metal-argyrodite solid state electrolyte interphase[J]. Advanced Energy Materials, 2023, 13(46): 2301338. |
33 | BAI X M, ZHAO G Y, YANG G Y, et al. A magnetic-assisted construction of functional gradient interlayer for dendrite-free solid-state lithium batteries[J]. Energy Storage Materials, 2023, 63: 103041. |
34 | BAI X M, ZHAO G Y, YANG G Y, et al. Multifunctional double layer based on regional segregation for stabilized and dendrite-free solid-state Li batteries[J]. Advanced Energy Materials, 2024, 14(12): 2304112. |
35 | WANG J, ZHANG S S, ZHAO H L, et al. Construction of an intimately riveted Li/garnet interface with ultra-low interfacial resistance for solid-state batteries[J]. Journal of Materials Chemistry A, 2024, 12(8): 4903-4911. |
36 | CHATTERJEE D, NAIK K G, VISHNUGOPI B S, et al. Electrodeposition stability landscape for solid-solid interfaces[J]. Advanced Science, 2024, 11(6): e2307455. |
37 | OH J, CHOI S H, KIM J Y, et al. Anode‐less all‐solid‐state batteries operating at room temperature and low pressure[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202301508. |
38 | GEORGIOS P, MONOJOY G, KEUM JONG K, et al. Nanoscale ion transport enhances conductivity in solid polymer-ceramic lithium electrolytes[J]. ACS Nano, 2024: 18(4): 2750-2762.. |
39 | PEI F, WU L, ZHANG Y, et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries[J]. Nature Communications, 2024, 15: 351. |
40 | WANG T H, CHEN B T, LIU C, et al. Build a high-performance all-solid-state lithium battery through introducing competitive coordination induction effect in polymer-based electrolyte[J]. Angewandte Chemie (International Ed in English), 2024, 63(16): e202400960. |
41 | PAN H, WANG L, SHI Y, et al. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure[J]. Nature Communications, 2024, 15: 2263. |
42 | CHENG D Y, WYNN T, LU B Y, et al. A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure[J]. Nature Nanotechnology, 2023, 18: 1448-1455. |
43 | WU J F, ZOU Z Y, PU B W, et al. Liquid-like Li-ion conduction in oxides enabling anomalously stable charge transport across the Li/electrolyte interface in all-solid-state batteries[J]. Advanced Materials, 2023, 35(40): e2303730. |
44 | XU S J, CHENG X B, YANG S J, et al. Performance enhancement of the Li6PS5Cl-based solid-state batteries by scavenging lithium dendrites with LaCl3-based electrolyte[J]. Advanced Materials, 2024, 36(15): 2310356. |
45 | DU Z, YANG Z Z, TAO R M, et al. A Novel High‐Performance Electrolyte for Extreme Fast Charging in Pilot Scale Li‐ion Pouch Cells[J]. Batteries & Supercaps, 2023, doi: 10.1002/batt.202300292. |
46 | FANG M, YUE X, DONG Y, et al. A temperature-dependent solvating electrolyte for wide-temperature and fast-charging lithium[J]. Joule, 2024, doi: 10.1016/j.joule.2023.12.012. |
47 | LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627: 101-107. |
48 | LI A M, WANG Z Y, POLLARD T P, et al. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes[J]. Nature Communications, 2024, 15: 1206. |
49 | CHEN L, WANG J X, CHEN M, et al. "Dragging effect" induced fast desolvation kinetics and-50 ℃ workable high-safe lithium batteries[J]. Energy Storage Materials, 2024, 65: 103098. |
50 | CHEN X P, LI Z L, ZHAO H, et al. Dominant solvent-separated ion pairs in electrolytes enable superhigh conductivity for fast-charging and low-temperature lithium ion batteries[J]. ACS Nano, 2024, 18(11): 8350-8359. |
51 | CHEN S M, ZHENG G R, YAO X M, et al. Constructing matching cathode-anode interphases with improved chemo-mechanical stability for high-energy batteries[J]. ACS Nano, 2024, 18(8): 6600-6611. |
52 | YANG M, CHEN K A, LI H, et al. Molecular adsorption-induced interfacial solvation regulation to stabilize graphite anode in ethylene carbonate-free electrolytes[J]. Advanced Functional Materials, 2023, 33(47): 2306828. |
53 | WEILING M, LECHTENFELD C, PFEIFFER F, et al. Mechanistic understanding of additive reductive degradation and SEI formation in high-voltage NMC811||SiOx-containing cells via operando ATR-FTIR spectroscopy[J]. Advanced Energy Materials, 2023, 14(5): doi: 10.1002/aenm.202303568. |
54 | LIU X X, LI Y, LIU J D, et al. 570 wh/kg-grade lithium metal pouch cell with 4.9V highly Li+ conductive armor-like cathode electrolyte interphase via partially fluorinated electrolyte engineering[J]. Advanced Materials, 2024, doi: 10.1002/adma.202401505. |
55 | CHEN C, GUO J L, WU C L, et al. Borate-functionalized disiloxane as effective electrolyte additive for 4.5 V LiNi0.8Co0.1Mn0.1O2/graphite batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8733-8741. |
56 | CHENG W J, LI N, LIU J C, et al. Solid electrolyte interface film-forming and surface-stabilizing bifunctional 1, 2-bis((trimethylsilyl)oxy) benzene as novel electrolyte additive for silicon-based lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 51025-51035. |
57 | JIA P F, WANG J, ZHENG T L, et al. Boosting cathode activity and anode stability of lithium-sulfur batteries with vigorous iodic species triggered by nitrate[J]. Angewandte Chemie (International Ed in English), 2024: e202401055. |
58 | KIM J T, SHIN H J, KIM A Y, et al. An argyrodite sulfide coated NCM cathode for improved interfacial contact in normal-pressure operational all-solid-state batteries[J]. Journal of Materials Chemistry A, 2023, 11(38): 20549-20558. |
59 | HUANG Y Y, ZHOU L D, LI C, et al. Waxing bare high-voltage cathode surfaces to enable sulfide solid-state batteries[J]. ACS Energy Letters, 2023, 8(11): 4949-4956. |
60 | LU P S, GONG S, WANG C H, et al. Superior low-temperature all-solid-state battery enabled by high-ionic-conductivity and low-energy-barrier interface[J]. ACS Nano, 2024, 18(10): 7334-7345. |
61 | HONG S B, LEE Y J, LEE H J, et al. Exploring the cathode active materials for sulfide-based all-solid-state lithium batteries with high energy density[J]. Small, 2024, 20(9): e2304747. |
62 | LIN C, LIU Y, SU H, et al. Elevating cycle stability and reaction kinetics in Ni-rich cathodes through tailored bulk and interface chemistry for sulfide-based all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202311564. |
63 | KIM J, LEE W, SEOK J, et al. Critical factors to understanding the electrochemical performance of all-solid-state batteries: Solid interfaces and non-zero lattice strain[J]. Small, 2023, doi: 10.1002/smll.202304269. |
64 | CHENG J L, PENG X X, ZHANG Y Q, et al. Oxygen transport through amorphous cathode coatings in solid-state batteries[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2024, 36(6): 2642-2651. |
65 | WANG Y, WU D X, CHEN P H, et al. Dual-function modifications for high-stability Li-rich cathode toward sulfide all-solid-state batteries[J]. Advanced Functional Materials, 2024, 34(4): 2309822. |
66 | ZHANG M H, ZHANG S J, LI M, et al. Self-sacrificing reductive interphase for robust and high-performance sulfide-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(5): 2303647. |
67 | SONG Z H, WANG L, JIANG W Y, et al. "like compatible like" strategy designing strong cathode-electrolyte interface quasi-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(4): 2302688. |
68 | CHEN B T, ZHANG J C, WONG D, et al. Achieving the high capacity and high stability of Li-rich oxide cathode in garnet-based solid-state battery[J]. Angewandte Chemie International Edition, 2024, 63(1): 2315856. |
69 | CHENG G Z, SUN H, WANG H R, et al. Efficient ion percolating network for high-performance all-solid-state cathodes[J]. Advanced Materials, 2024: e2312927. |
70 | SONG Z Y, WANG T R, DAI Y M, et al. A sintering-free cathode for garnet-based all-solid-state Li metal batteries[J]. Advanced Energy Materials, 2024: 2304543. |
71 | CAI G R, GAO H P, LI M Q, et al. Partially ion-paired solvation structure design for lithium-sulfur batteries under extreme operating conditions[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202316786. |
72 | WANG M, SU H, ZHONG Y, et al. Localized S-Li2S conversion with accelerated kinetics mediated by mixed conductive shell for high-performance solid-state lithium-sulfur battery[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202302255. |
73 | GUO T, DING Y C, XU C, et al. High crystallinity 2D π-d conjugated conductive metal-organic framework for boosting polysulfide conversion in lithium-sulfur batteries[J]. Advanced Science, 2023, 10(27): e2302518. |
74 | LI J H, WANG Z Y, SHI K X, et al. Nanoreactors encapsulating built-in electric field as a "bridge" for Li–S batteries: Directional migration and rapid conversion of polysulfides[J]. Advanced Energy Materials, 2024, 14(9): 2303546. |
75 | GUO Q Y, WANG C, SHANG J, et al. A freestanding, dissolution- and diffusion-limiting, flexible sulfur electrode enables high specific capacity at high mass loading[J]. Advanced Materials, 2024: 2400041. |
76 | HUANG Y Z, JI Y X, ZHANG L X, et al. Integrated configuration design strategy via cathode-gel electrolyte with forged solid electrolyte interface toward advanced lithium-sulfurized polyacrylonitrile batteries[J]. Advanced Functional Materials, 2023, 33(44): 2306484. |
77 | LI H, WANG R, ZHAO S Q, et al. Sulfur/carbon cathode composite with LiI additives for enhanced electrochemical performance in all-solid-state lithium-sulfur batteries[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 162. |
78 | SHI C M, TAKEUCHI S, ALEXANDER G V, et al. High sulfur loading and capacity retention in bilayer garnet sulfurized-polyacrylonitrile/lithium-metal batteries with gel polymer electrolytes[J]. Advanced Energy Materials, 2023, 13(42): 2301656. |
79 | CHOI H N, KIM H, KIM M J, et al. Constructing the interconnected charge transfer pathways in sulfur composite cathode for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 11076-11083. |
80 | YANG M, WU Y J, YANG K Q, et al. High-areal-capacity and long-cycle-life all-solid-state lithium-metal battery by mixed-conduction interface layer[J]. Advanced Energy Materials, 2024, 14(15): 2303229. |
81 | GRANDJEAN M, PERREY M, RANDREMA X, et al. Low pressure cycling of solid state Li-ion pouch cells based on NMC-sulfide -nanosilicon chemistry[J]. Journal of Power Sources, 2023, doi: 10.1016/j.jpowsour.2023.233646. |
82 | HAN D Y, SON H B, HAN S H, et al. Hierarchical 3D electrode design with high mass loading enabling high-energy-density flexible lithium-ion batteries[J]. Small, 2023, 19(48): e2305416. |
83 | KIM J H, LEE K M, KIM J W, et al. Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes[J]. Nature Communications, 2023, 14: 5721. |
84 | CHECKO S, JU Z Y, ZHANG B W, et al. Fast-charging, binder-free lithium battery cathodes enabled via multidimensional conductive networks[J]. Nano Letters, 2024, 24(5): 1695-1702. |
85 | TAO R M, TAN S S, MEYER III H M, et al. Insights into the chemistry of the cathodic electrolyte interphase for PTFE-based dry-processed cathodes[J]. ACS Applied Materials & Interfaces, 2023, 15(34): 40488-40495. |
86 | ZHAO W, ZHANG Y, SUN N, et al. Maintaining interfacial transports for sulfide-based all-solid-state batteries operating at low external pressure[J]. Acs Energy Letters, 2023, 8(12): 5050-5060. |
87 | XU Y B, JIA H, GAO P Y, et al. Direct in situ measurements of electrical properties of solid-electrolyte interphase on lithium metal anodes[J]. Nature Energy, 2023, 8: 1345-1354. |
88 | PANTENBURG I, CRONAU M, BOLL T, et al. Challenging prevalent solid electrolyte interphase (SEI) models: An atom probe tomography study on a commercial graphite electrode[J]. ACS Nano, 2023, 17(21): 21531-21538. |
89 | LOMBARDO T, KERN C, SANN J, et al. Bridging the gap: Electrode microstructure and interphase characterization by combining TOF-SIMS and machine learning[J]. Advanced Materials Interfaces, 2023, doi: 10.1002/admi.202300640. |
90 | OSHIRO S, TSUKASAKI H, NAKAJIMA H, et al. 3D observation using TEM tomography of solid electrolyte-electrode interface in all-solid-state Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2023: doi: 10.1007/s10008-023-05714-4. |
91 | PANDYA R, VALZANIA L, DORCHIES F, et al. Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries[J]. Nature Nanotechnology, 2023, 18: 1185-1194. |
92 | FANTIN R, JOUSSEAUME T, RAMOS R, et al. Depth-resolving the charge compensation mechanism from LiNiO2 to NiO2[J]. ACS Energy Letters, 2024, 9(4): 1507-1515. |
93 | HWANG T, CHUNG I, IM S, et al. Contact loss and its improvement at the interface between the cathode and solid electrolyte in all solid-state batteries based on multi-scale and multi-physics analysis[J]. Journal of Materials Chemistry A, 2023, 11(35): 18790-18800. |
94 | CHEN W X, ALLEN J M, REZAEI S, et al. Cohesive phase-field chemo-mechanical simulations of inter- and trans- granular fractures in polycrystalline NMC cathodes via image-based 3D reconstruction[J]. Journal of Power Sources, 2024, 596: 234054. |
95 | ALRASHDAN M H S. Exchange current density at the positive electrode of lithium-ion batteries optimization using the Taguchi method[J]. Journal of Solid State Electrochemistry, 2024, 28(1): 213-227. |
96 | CHEN W X, MUHTAR D, LI K L, et al. Regulating cation disorder triggered-electronic reshuffling for sustainable conventional layered oxide cathodes[J]. Chemistry of Materials, 2024, 36(3): 1249-1261. |
97 | BARAI P, FUCHS T, TREVISANELLO E, et al. Study of void formation at the Lithium|Solid electrolyte interface[J]. Chemistry of Materials, 2024, 36(5): 2245-2258. |
98 | REN F C, WU Y Q, ZUO W H, et al. Visualizing the SEI formation between lithium metal and solid-state electrolyte[J]. Energy & Environmental Science, 2024, 17(8): 2743-2752. |
99 | HAN Z Y, GAO R H, WANG T S, et al. Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics[J]. Nature Catalysis, 2023, 6: 1073-1086. |
100 | PARK Y S, KIM K, LEE J W, et al. Effect of cell pressure on the electrochemical performance of all-solid-state lithium batteries with zero-excess Li metal anode[J]. Journal of the American Ceramic Society, 2023, 106(12): 7322-7330. |
[1] | Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. |
[2] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[3] | Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495. |
[4] | Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth [J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. |
[5] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[6] | Mingming SUN. Patent analysis of organic-inorganic composite solid-state electrolytes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1096-1105. |
[7] | Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. |
[8] | Zhaokai YUAN, Qiuhua FAN, Dongqing WANG, Tianmin SUN. State of charge estimation for lithium-ion batteries under multiple temperatures based on the MIAEK algorithm [J]. Energy Storage Science and Technology, 2024, 13(2): 680-690. |
[9] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[10] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[11] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. |
[12] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
[13] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
[14] | Shanshan CHEN, Xiang ZHENG, Ruo WANG, Mingman YUAN, Wei PENG, Boming LU, Guangzhao ZHANG, Chaoyang WANG, Jun WANG, Yonghong DENG. Research progress in the electrolyte additives in silicon-based anode for lithium-ion batteries: Challenges and prospects [J]. Energy Storage Science and Technology, 2024, 13(1): 279-292. |
[15] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||