Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1340-1351.doi: 10.19799/j.cnki.2095-4239.2024.0916
• Energy Storage Materials and Devices • Previous Articles Next Articles
Dequan HUANG(), Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG(
)
Received:
2024-09-27
Revised:
2024-10-22
Online:
2025-04-28
Published:
2025-05-20
Contact:
Yi LIANG
E-mail:hdq2535@163.com;liangyi@guat.edu.cn
CLC Number:
Dequan HUANG, Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG. Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance[J]. Energy Storage Science and Technology, 2025, 14(4): 1340-1351.
1 | WEN J P, ZHAO D, ZHANG C W. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency[J]. Renewable Energy, 2020, 162: 1629-1648. DOI: 10.1016/j.renene.2020.09.055. |
2 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. DOI: 10. 1039/c7cs00863e. |
3 | XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. DOI: 10.1002/eem2.12450. |
4 | DING J F, ZHANG Y T, XU R, et al. Review on lithium metal anodes towards high energy density batteries[J]. Green Energy & Environment, 2023, 8(6): 1509-1530. DOI: 10.1016/j.gee. 2022.08.002. |
5 | HUANG Y F, YANG H T, GAO Y, et al. Mechanism and solutions of lithium dendrite growth in lithium metal batteries[J]. Materials Chemistry Frontiers, 2024, 8(5): 1282-1299. DOI: 10.1039/D3QM01151H. |
6 | BECHERER J, KRAMER D, MÖNIG R. The growth mechanism of lithium dendrites and its coupling to mechanical stress[J]. Journal of Materials Chemistry A, 2022, 10(10): 5530-5539. DOI: 10.1039/D1TA10920K. |
7 | NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732. DOI: 10.1038/s41560-021-00852-3. |
8 | HAO Z D, ZHAO Q, TANG J D, et al. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries[J]. Materials Horizons, 2021, 8(1): 12-32. DOI: 10.1039/d0mh01167c. |
9 | KO S, OBUKATA T, SHIMADA T, et al. Electrode potential influences the reversibility of lithium-metal anodes[J]. Nature Energy, 2022, 7(12): 1217-1224. DOI: 10.1038/s41560-022-01144-0. |
10 | ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348. DOI: 10.1021/acs.chemrev.0c00275. |
11 | YANG H C, LI J, SUN Z H, et al. Reliable liquid electrolytes for lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 113-129. DOI: 10.1016/j.ensm.2020.04.010. |
12 | YU Z A, WANG H S, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533. DOI: 10.1038/s41560-020-0634-5. |
13 | WU H P, JIA H, WANG C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003092. DOI: 10.1002/aenm.202003092. |
14 | LIN L, ZHENG H F, LUO Q, et al. Regulating lithium nucleation at the electrolyte/electrode interface in lithium metal batteries[J]. Advanced Functional Materials, 2024, 34(24): 2315201. DOI: 10.1002/adfm.202315201. |
15 | GUNNARSDÓTTIR A B, AMANCHUKWU C V, MENKIN S, et al. Noninvasive in situ NMR study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemical Society, 2020, 142(49): 20814-20827. DOI: 10.1021/jacs.0c10258. |
16 | LIU S J, JIAO K J, YAN J H. Prospective strategies for extending long-term cycling performance of anode-free lithium metal batteries[J]. Energy Storage Materials, 2023, 54: 689-712. DOI: 10.1016/j.ensm.2022.11.021. |
17 | LI Z, RAO H, ATWI R, et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14(1): 868. DOI: 10.1038/s41467-023-36647-1. |
18 | REN X D, ZOU L F, JIAO S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. DOI: 10.1021/acsenergylett. 9b00381. |
19 | LIU S F, JI X, PIAO N, et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes[J]. Angewandte Chemie International Edition, 2021, 60(7): 3661-3671. DOI: 10.1002/anie.202012005. |
20 | WEN Z X, FANG W Q, WU X Y, et al. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte[J]. Advanced Functional Materials, 2022, 32(35): 2204768. DOI: 10.1002/adfm.202204768. |
21 | KIM K, MA H, PARK S, et al. Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: Promise and challenges[J]. ACS Energy Letters, 2020, 5(5): 1537-1553. DOI: 10.1021/acsenergylett.0c00468. |
22 | LI Y M, GUO Q, WU Y, et al. Artificial graphite paper as a corrosion-resistant current collector for long-life lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(19): 2214523. DOI: 10.1002/adfm.202214523. |
23 | ZHAO Y, ZHOU T H, ASHIROV T, et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nature Communications, 2022, 13(1): 2575. DOI: 10.1038/s41467-022-29199-3. |
24 | WANG Y K, LI Z M, HOU Y P, et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries[J]. Chemical Society Reviews, 2023, 52(8): 2713-2763. DOI: 10.1039/D2CS00873D. |
25 | ZHAO Y, ZHOU T H, MENSI M, et al. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14(1): 299. DOI: 10.1038/s41467-023-35934-1. |
26 | WANG Y, YANG X, MENG Y F, et al. Fluorine chemistry in rechargeable batteries: Challenges, progress, and perspectives[J]. Chemical Reviews, 2024, 124(6): 3494-3589. DOI: 10.1021/acs.chemrev.3c00826. |
27 | GUO L Y, HUANG F F, CAI M Z, et al. Organic-inorganic hybrid SEI induced by a new lithium salt for high-performance metallic lithium anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 32886-32893. DOI: 10.1021/acsami.1c04788. |
28 | AURBACH D, MARKEVICH E, SALITRA G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic co-solvents[J]. Journal of the American Chemical Society, 2021, 143(50): 21161-21176. DOI: 10.1021/jacs.1c11315. |
29 | ZHAI P B, LIU L X, GU X K, et al. Interface engineering for lithium metal anodes in liquid electrolyte[J]. Advanced Energy Materials, 2020, 10(34): 2001257. DOI: 10.1002/aenm.202001257. |
30 | GUO Z Y, YANG M, FAN Q, et al. Inorganic-enriched solid electrolyte interphases: A key to enhance sodium-ion battery cycle stability?[J]. Small, 2024, 20(51): 2407425. DOI: 10.1002/smll.202407425. |
[1] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
[2] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[3] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. |
[4] | Tao YE, Yijun WANG, Zilong TANG, Guoliang PAN. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid [J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. |
[5] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
[6] | Lei WANG, Shaomian LIU, Fenglan FAN, Ziteng YANG. Structure-activity relationships of fast-growing wood based hard carbon anodes for sodium ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1107-1114. |
[7] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[8] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
[9] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[10] | Gongxun LU, Huadong YUAN, Jianmin LUO, Yao WANG, Yujing LIU, Peng SHI, Shihui ZOU, Guangmin ZHOU, Xinyong TAO, Jianwei NAI. Surface pre-treatment strategies for lithium metal: Advancement and perspective [J]. Energy Storage Science and Technology, 2025, 14(3): 947-964. |
[11] | Zixin XIAO, Hong ZHANG, Lin XU. Nanowires modulating ion transport and interfaces in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. |
[12] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of 100 selected recent papers on lithium batteries (December 1, 2024 to January 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(3): 1310-1330. |
[13] | Yi LIANG, Tao WEI, Guangda YIN, Dequan HUANG. Design of a lithiophilic Ag-3D-Cu electrode and its electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(2): 515-524. |
[14] | Zhenfei LIANG, Xingxing WANG, Haochen HU, Yanhong LI, Boxue OUYANG, Xiaoyun SUN, Ruimao GAO, Jun YE, Deren WANG. Advancements in electrolyte and membrane technologies for zinc-bromine flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 583-600. |
[15] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||