Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1331-1339.doi: 10.19799/j.cnki.2095-4239.2024.0988
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xingqun LIAO1(), Rui YANG1, Lijuan YU1, Dalin HU1(
), Feng XIAO2(
), Jing HU3, Zhouguang LU3(
)
Received:
2024-10-22
Revised:
2024-11-29
Online:
2025-04-28
Published:
2025-05-20
Contact:
Dalin HU, Feng XIAO, Zhouguang LU
E-mail:xqliao@highpowertech.com;David.hu@highpowerech.com;csuxiaofeng@163.com;luzg@sustech.edu.cn
CLC Number:
Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2[J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339.
Fig. 5
SEM images of cathode and anode of fresh and cycled cell [fresh: (a) Base negative, (c) Base+DCPY negative, (e) Base positive electrode, (g) Base+DCPY positive electrode; After 500 cycles at 45 ℃: (b) Base negative electrode, (d) Base+DCPY negative electrode, (f) Base positive electrode, (h) Base+DCPY positive electrode]"
1 | LIU Z Z, HAN M M, ZHANG S B, et al. Hybrid surface modification and bulk doping enable spent LiCoO2 cathodes for high-voltage operation[J]. Advanced Materials, 2024, 36(32): 2404188. DOI: 10.1002/adma.202404188. |
2 | 胡大林, 任潘利, 张昌明, 等. Al-Y-Zr原位共掺杂提高4.53V钴酸锂正极材料的循环性能[J]. 储能科学与技术, 2024, 13(3): 742-748. DOI: 10.19799/j.cnki.2095-4239.2023.0741. |
HU D L, REN P L, ZHANG C M, et al. Improving the cycling performance of LiCoO2 at 4.53 V via in situ co-doping of Al-Y-Zr[J]. Energy Storage Science and Technology, 2024, 13(3): 742-748. DOI: 10.19799/j.cnki.2095-4239.2023.0741. | |
3 | LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. DOI: 10.1002/aenm.202000982. |
4 | KONAR R, MAITI S, SHPIGEL N, et al. Reviewing failure mechanisms and modification strategies in stabilizing high-voltage LiCoO2 cathodes beyond 4.55V[J]. Energy Storage Materials, 2023, 63: 103001. DOI: 10.1016/j.ensm.2023.103001. |
5 | LI Z J, YI H C, DING W Y, et al. Revealing the accelerated capacity decay of a high-voltage LiCoO2 upon harsh charging procedure[J]. Advanced Functional Materials, 2024, 34(14): 2312837. DOI: 10.1002/adfm.202312837. |
6 | JU L, ZHU Z, HUANG Y, et al. Gradient-morph LiCoO2 single crystals with stabilized energy-density above 3400 Wh/L in full-cells: U.S. Patent Application 17/996,069[P]. 2023-6-15. https://patents.google.com/patent/US20230187617A1/en. |
7 | ZHU Z, WANG H, LI Y, et al. A surface Se-substituted LiCo [O2- δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells[J]. Advanced Materials, 2020, 32(50): 2005182. DOI: 10.1002/adma.202005182. |
8 | 徐冲, 徐宁, 蒋志敏, 等. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. |
XU C, XU N, JIANG Z M, et al. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. | |
9 | SUN Z Y, LI F K, DING J Y, et al. High-voltage and high-temperature LiCoO2 operation via the electrolyte additive of electron-defect boron compounds[J]. ACS Energy Letters, 2023, 8(6): 2478-2487. DOI: 10.1021/acsenergylett.3c00324. |
10 | 刘承鑫, 李梓衡, 陈泽宇, 等. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239.2024.0121. |
LIU C X, LI Z H, CHEN Z Y, et al. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage[J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239. 2024.0121. | |
11 | WANG Y, ZHANG Q H, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413. DOI: 10.1002/aenm.202001413. |
12 | JENA A, LEE P H, PANG W K, et al. Monitoring the phase evolution in LiCoO2 electrodes during battery cycles using in situ neutron diffraction technique[J]. Journal of the Chinese Chemical Society, 2020, 67(3): 344-352. DOI: 10.1002/jccs.201900448. |
13 | 武怿达, 张义, 詹元杰, 等. 氧化硼修饰的钴酸锂材料及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1687-1692. DOI: 10.19799/j.cnki.2095-4239.2021.0685. |
WU Y D, ZHANG Y, ZHAN Y J, et al. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode[J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. DOI: 10.19799/j.cnki.2095-4239.2021.0685. | |
14 | REN J C, TANG Y, LI W B, et al. Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy[J]. EcoMat, 2023, 5(6): e12344. DOI: 10.1002/eom2.12344. |
15 | ZHANG W, ZHANG X Y, CHENG F Y, et al. Enabling stable 4.6 V LiCoO2 cathode through oxygen charge regulation strategy[J]. Journal of Energy Chemistry, 2023, 76: 557-565. DOI: 10.1016/j.jechem.2022.09.034. |
16 | QIU J W, GUO J, LI J H, et al. Insight into the contribution of the electrolyte additive LiBF4 in high-voltage LiCoO2||SiO/C pouch cells[J]. ACS Applied Materials & Interfaces, 2023. DOI: 10.1021/acsami.3c10903. |
17 | YANG H Y, ZHAO Y J, QIN T, et al. Chemically active sulfonate additive with transition metal and oxygen dual-site deactivation for high-voltage LiCoO2[J]. ACS Energy Letters, 2024, 9(9): 4475-4484. DOI: 10.1021/acsenergylett.4c01898. |
18 | WU Q, ZHANG B, LU Y Y. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 283-308. DOI: 10.1016/j.jechem. 2022.07.007. |
19 | ZHANG Z F, QIN C D, WANG K, et al. Deciphering the critical effect of cathode-electrolyte interphase by revealing its dynamic evolution[J]. Journal of Energy Chemistry, 2023, 81: 192-199. DOI: 10.1016/j.jechem.2023.01.046. |
20 | KIM G Y, DAHN J R. The effect of some nitriles as electrolyte additives in Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(3): A437-A447. DOI: 10.1149/2.0651503jes. |
21 | TONG B, SONG Z Y, WAN H H, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries[J]. InfoMat, 2021, 3(12): 1364-1392. DOI: 10.1002/inf2.12235. |
22 | WANG H L, CHEN S X, LI Y, et al. Organosilicon-based functional electrolytes for high-performance lithium batteries[J]. Advanced Energy Materials, 2021, 11(28): 2101057. DOI: 10. 1002/aenm.202101057. |
23 | LIU X, FU A, LIN J D, et al. Constructing a stabilized cathode electrolyte interphase for high-voltage LiCoO2 batteries via the phenylmaleic anhydride additive[J]. ACS Applied Energy Materials, 2023, 6(3): 2001-2009. DOI: 10.1021/acsaem.2c03934. |
24 | RONG H B, XU M Q, ZHU Y M, et al. A novel imidazole-based electrolyte additive for improved electrochemical performance of high voltage nickel-rich cathode coupled with graphite anode lithium ion battery[J]. Journal of Power Sources, 2016, 332: 312-321. DOI: 10.1016/j.jpowsour.2016.09.016. |
25 | XIE Z K, WU Z J, AN X W, et al. 2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability[J]. Chemical Engineering Journal, 2020, 393: 124789. DOI: 10.1016/j.cej.2020.124789. |
26 | ZHANG Z, LIU F Y, HUANG Z Y, et al. Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(11): 12954-12964. DOI: 10.1021/acsaem.1c02593. |
27 | WANG W L, HU H L, ZENG X Y, et al. Bifunctional mechanism and electrochemical performance of self-healing nitrile ether electrolyte additives in 4.5 V LiCoO2/artificial graphite lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: 231799. DOI: 10.1016/j.jpowsour.2022.231799. |
28 | LI W T, CAMPION C, LUCHT B L, et al. Additives for stabilizing LiPF6-based electrolytes against thermal decomposition[J]. Journal of the Electrochemical Society, 2005, 152(7): A1361. DOI: 10.1149/1.1926651. |
[1] | Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460. |
[2] | Wei CAO, Fei CHEN, Xiangdong KONG, Zhicheng ZHU, Xuebing HAN, Languang LU, Yuejiu ZHENG. Progress of coating process for lithium-ion battery electrodes [J]. Energy Storage Science and Technology, 2025, 14(1): 90-103. |
[3] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. |
[4] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. |
[5] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[6] | Chunzheng LIU, Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode [J]. Energy Storage Science and Technology, 2024, 13(4): 1302-1309. |
[7] | Dalin HU, Panli REN, Changming ZHANG, Mingyang YANG, Zhouguang LU. Improving the cycling performance of LiCoO2 at 4.53 V via in situ co-doping of Al-Y-Zr [J]. Energy Storage Science and Technology, 2024, 13(3): 742-748. |
[8] | Yihan Li, Shigang LU, Jing WANG, Wangjun ZHA, Zhenghang DAI, Yitong GUO, Zexi YANG. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(10): 3656-3665. |
[9] | Yuchao QIU, Baishuang CHEN, Cheng CHEN, Ruipeng QIAN. Quasi-static constitutive modeling of lithium-ion battery materials under compression [J]. Energy Storage Science and Technology, 2024, 13(10): 3518-3522. |
[10] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. |
[11] | Shanshan CHEN, Xiang ZHENG, Ruo WANG, Mingman YUAN, Wei PENG, Boming LU, Guangzhao ZHANG, Chaoyang WANG, Jun WANG, Yonghong DENG. Research progress in the electrolyte additives in silicon-based anode for lithium-ion batteries: Challenges and prospects [J]. Energy Storage Science and Technology, 2024, 13(1): 279-292. |
[12] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[13] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[14] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[15] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||