Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1331-1339.doi: 10.19799/j.cnki.2095-4239.2024.0988
• Energy Storage Materials and Devices • Previous Articles Next Articles
					
													Xingqun LIAO1( ), Rui YANG1, Lijuan YU1, Dalin HU1(
), Rui YANG1, Lijuan YU1, Dalin HU1( ), Feng XIAO2(
), Feng XIAO2( ), Jing HU3, Zhouguang LU3(
), Jing HU3, Zhouguang LU3( )
)
												  
						
						
						
					
				
Received:2024-10-22
															
							
																	Revised:2024-11-29
															
							
															
							
																	Online:2025-04-28
															
							
																	Published:2025-05-20
															
						Contact:
								Dalin HU, Feng XIAO, Zhouguang LU   
																	E-mail:xqliao@highpowertech.com;David.hu@highpowerech.com;csuxiaofeng@163.com;luzg@sustech.edu.cn
																					CLC Number:
Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2[J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339.
 
													
													Fig. 5
SEM images of cathode and anode of fresh and cycled cell [fresh: (a) Base negative, (c) Base+DCPY negative, (e) Base positive electrode, (g) Base+DCPY positive electrode; After 500 cycles at 45 ℃: (b) Base negative electrode, (d) Base+DCPY negative electrode, (f) Base positive electrode, (h) Base+DCPY positive electrode]"
 
														| 1 | LIU Z Z, HAN M M, ZHANG S B, et al. Hybrid surface modification and bulk doping enable spent LiCoO2 cathodes for high-voltage operation[J]. Advanced Materials, 2024, 36(32): 2404188. DOI: 10.1002/adma.202404188. | 
| 2 | 胡大林, 任潘利, 张昌明, 等. Al-Y-Zr原位共掺杂提高4.53V钴酸锂正极材料的循环性能[J]. 储能科学与技术, 2024, 13(3): 742-748. DOI: 10.19799/j.cnki.2095-4239.2023.0741. | 
| HU D L, REN P L, ZHANG C M, et al. Improving the cycling performance of LiCoO2 at 4.53 V via in situ co-doping of Al-Y-Zr[J]. Energy Storage Science and Technology, 2024, 13(3): 742-748. DOI: 10.19799/j.cnki.2095-4239.2023.0741. | |
| 3 | LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. DOI: 10.1002/aenm.202000982. | 
| 4 | KONAR R, MAITI S, SHPIGEL N, et al. Reviewing failure mechanisms and modification strategies in stabilizing high-voltage LiCoO2 cathodes beyond 4.55V[J]. Energy Storage Materials, 2023, 63: 103001. DOI: 10.1016/j.ensm.2023.103001. | 
| 5 | LI Z J, YI H C, DING W Y, et al. Revealing the accelerated capacity decay of a high-voltage LiCoO2 upon harsh charging procedure[J]. Advanced Functional Materials, 2024, 34(14): 2312837. DOI: 10.1002/adfm.202312837. | 
| 6 | JU L, ZHU Z, HUANG Y, et al. Gradient-morph LiCoO2 single crystals with stabilized energy-density above 3400 Wh/L in full-cells: U.S. Patent Application 17/996,069[P]. 2023-6-15. https://patents.google.com/patent/US20230187617A1/en. | 
| 7 | ZHU Z, WANG H, LI Y, et al. A surface Se-substituted LiCo [O2- δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells[J]. Advanced Materials, 2020, 32(50): 2005182. DOI: 10.1002/adma.202005182. | 
| 8 | 徐冲, 徐宁, 蒋志敏, 等. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. | 
| XU C, XU N, JIANG Z M, et al. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. | |
| 9 | SUN Z Y, LI F K, DING J Y, et al. High-voltage and high-temperature LiCoO2 operation via the electrolyte additive of electron-defect boron compounds[J]. ACS Energy Letters, 2023, 8(6): 2478-2487. DOI: 10.1021/acsenergylett.3c00324. | 
| 10 | 刘承鑫, 李梓衡, 陈泽宇, 等. 储能锂离子电池高温诱发热失控特性研究[J]. 储能科学与技术, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239.2024.0121. | 
| LIU C X, LI Z H, CHEN Z Y, et al. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage[J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. DOI: 10.19799/j.cnki.2095-4239. 2024.0121. | |
| 11 | WANG Y, ZHANG Q H, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): 2001413. DOI: 10.1002/aenm.202001413. | 
| 12 | JENA A, LEE P H, PANG W K, et al. Monitoring the phase evolution in LiCoO2 electrodes during battery cycles using in situ neutron diffraction technique[J]. Journal of the Chinese Chemical Society, 2020, 67(3): 344-352. DOI: 10.1002/jccs.201900448. | 
| 13 | 武怿达, 张义, 詹元杰, 等. 氧化硼修饰的钴酸锂材料及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1687-1692. DOI: 10.19799/j.cnki.2095-4239.2021.0685. | 
| WU Y D, ZHANG Y, ZHAN Y J, et al. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode[J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. DOI: 10.19799/j.cnki.2095-4239.2021.0685. | |
| 14 | REN J C, TANG Y, LI W B, et al. Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy[J]. EcoMat, 2023, 5(6): e12344. DOI: 10.1002/eom2.12344. | 
| 15 | ZHANG W, ZHANG X Y, CHENG F Y, et al. Enabling stable 4.6 V LiCoO2 cathode through oxygen charge regulation strategy[J]. Journal of Energy Chemistry, 2023, 76: 557-565. DOI: 10.1016/j.jechem.2022.09.034. | 
| 16 | QIU J W, GUO J, LI J H, et al. Insight into the contribution of the electrolyte additive LiBF4 in high-voltage LiCoO2||SiO/C pouch cells[J]. ACS Applied Materials & Interfaces, 2023. DOI: 10.1021/acsami.3c10903. | 
| 17 | YANG H Y, ZHAO Y J, QIN T, et al. Chemically active sulfonate additive with transition metal and oxygen dual-site deactivation for high-voltage LiCoO2[J]. ACS Energy Letters, 2024, 9(9): 4475-4484. DOI: 10.1021/acsenergylett.4c01898. | 
| 18 | WU Q, ZHANG B, LU Y Y. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 283-308. DOI: 10.1016/j.jechem. 2022.07.007. | 
| 19 | ZHANG Z F, QIN C D, WANG K, et al. Deciphering the critical effect of cathode-electrolyte interphase by revealing its dynamic evolution[J]. Journal of Energy Chemistry, 2023, 81: 192-199. DOI: 10.1016/j.jechem.2023.01.046. | 
| 20 | KIM G Y, DAHN J R. The effect of some nitriles as electrolyte additives in Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(3): A437-A447. DOI: 10.1149/2.0651503jes. | 
| 21 | TONG B, SONG Z Y, WAN H H, et al. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries[J]. InfoMat, 2021, 3(12): 1364-1392. DOI: 10.1002/inf2.12235. | 
| 22 | WANG H L, CHEN S X, LI Y, et al. Organosilicon-based functional electrolytes for high-performance lithium batteries[J]. Advanced Energy Materials, 2021, 11(28): 2101057. DOI: 10. 1002/aenm.202101057. | 
| 23 | LIU X, FU A, LIN J D, et al. Constructing a stabilized cathode electrolyte interphase for high-voltage LiCoO2 batteries via the phenylmaleic anhydride additive[J]. ACS Applied Energy Materials, 2023, 6(3): 2001-2009. DOI: 10.1021/acsaem.2c03934. | 
| 24 | RONG H B, XU M Q, ZHU Y M, et al. A novel imidazole-based electrolyte additive for improved electrochemical performance of high voltage nickel-rich cathode coupled with graphite anode lithium ion battery[J]. Journal of Power Sources, 2016, 332: 312-321. DOI: 10.1016/j.jpowsour.2016.09.016. | 
| 25 | XIE Z K, WU Z J, AN X W, et al. 2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability[J]. Chemical Engineering Journal, 2020, 393: 124789. DOI: 10.1016/j.cej.2020.124789. | 
| 26 | ZHANG Z, LIU F Y, HUANG Z Y, et al. Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(11): 12954-12964. DOI: 10.1021/acsaem.1c02593. | 
| 27 | WANG W L, HU H L, ZENG X Y, et al. Bifunctional mechanism and electrochemical performance of self-healing nitrile ether electrolyte additives in 4.5 V LiCoO2/artificial graphite lithium-ion batteries[J]. Journal of Power Sources, 2022, 542: 231799. DOI: 10.1016/j.jpowsour.2022.231799. | 
| 28 | LI W T, CAMPION C, LUCHT B L, et al. Additives for stabilizing LiPF6-based electrolytes against thermal decomposition[J]. Journal of the Electrochemical Society, 2005, 152(7): A1361. DOI: 10.1149/1.1926651. | 
| [1] | Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460. | 
| [2] | Wei CAO, Fei CHEN, Xiangdong KONG, Zhicheng ZHU, Xuebing HAN, Languang LU, Yuejiu ZHENG. Progress of coating process for lithium-ion battery electrodes [J]. Energy Storage Science and Technology, 2025, 14(1): 90-103. | 
| [3] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. | 
| [4] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. | 
| [5] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. | 
| [6] | Chunzheng LIU, Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode [J]. Energy Storage Science and Technology, 2024, 13(4): 1302-1309. | 
| [7] | Dalin HU, Panli REN, Changming ZHANG, Mingyang YANG, Zhouguang LU. Improving the cycling performance of LiCoO2 at 4.53 V via in situ co-doping of Al-Y-Zr [J]. Energy Storage Science and Technology, 2024, 13(3): 742-748. | 
| [8] | Yihan Li, Shigang LU, Jing WANG, Wangjun ZHA, Zhenghang DAI, Yitong GUO, Zexi YANG. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(10): 3656-3665. | 
| [9] | Yuchao QIU, Baishuang CHEN, Cheng CHEN, Ruipeng QIAN. Quasi-static constitutive modeling of lithium-ion battery materials under compression [J]. Energy Storage Science and Technology, 2024, 13(10): 3518-3522. | 
| [10] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. | 
| [11] | Shanshan CHEN, Xiang ZHENG, Ruo WANG, Mingman YUAN, Wei PENG, Boming LU, Guangzhao ZHANG, Chaoyang WANG, Jun WANG, Yonghong DENG. Research progress in the electrolyte additives in silicon-based anode for lithium-ion batteries: Challenges and prospects [J]. Energy Storage Science and Technology, 2024, 13(1): 279-292. | 
| [12] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. | 
| [13] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. | 
| [14] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. | 
| [15] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
