1 |
WU Y, ARUNKUMAR T, MANTHIRAM A. Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[Mn0.5- yNi0.5- yCo2 y]O2 solid solutions[J]. ECS Meeting Abstracts, 2007, (10): 653.
|
2 |
ZHENG J X, LIU T C, HU Z X, et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2[J]. Journal of the American Chemical Society, 2016, 138(40): 13326-13334.
|
3 |
GAO X P, YANG H X. Multi-electron reaction materials for high energy density batteries[J]. Energy Environ Sci, 2010, 3(2): 174-189.
|
4 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694.
|
5 |
ZHENG J M, GU M, XIAO J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process[J]. Nano Letters, 2013, 13(8): 3824-3830.
|
6 |
YU H J, ZHOU H S. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2013, 4(8): 1268-1280.
|
7 |
ZHENG F H, OU X, PAN Q C, et al. The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides[J]. Journal of Power Sources, 2017, 346: 31-39.
|
8 |
LANG X L, ZHAO C H, HU Z B, et al. Facile synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 by a thermal decomposition of eutectic Li-Ni-Co-Mn acetate as lithium ion battery cathodes[J]. International Journal of Electrochemical Science, 2015, 10(12): 9837-9848.
|
9 |
KANG S H, JOHNSON C S, VAUGHEY J T, et al. The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3·0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells[J]. Journal of the Electrochemical Society, 2006, 153(6): A1186.
|
10 |
THACKERAY M M, KANG S H, JOHNSON C S, et al. Comments on the structural complexity of lithium-rich Li1+ xM1- xO2 electrodes (M=Mn, Ni, Co) for lithium batteries[J]. Electrochemistry Communications, 2006. 8(9): 1531-1538.
|
11 |
GAO J, HUANG Z L, LI J J, et al. Preparation and characterization of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials for lithium-ion battery[J]. Ionics, 2014, 20(3): 301-307.
|
12 |
CHO T H, PARK S M, YOSHIO M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method[J]. Journal of Power Sources, 2005, 142(1/2): 306-312.
|
13 |
LIU J L, HOU M Y, YI J, et al. Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects[J]. Energy Environ Sci, 2014, 7(2): 705-714.
|
14 |
THACKERAY M M, JOHNSON C S, VAUGHEY J T, et al. Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2005, 15(23): 2257.
|
15 |
JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the Li2MnO3 component in 'composite' xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochemistry Communications, 2004, 6(10): 1085-1091.
|
16 |
THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112.
|
17 |
ZHAO L, SUN Y Y, SONG K X, et al. Enhanced electrochemical performance of Li-rich Li[Li0.2Mn0.52Ni0.13Co0.13V0.02]O2 cathode materials for lithium ion batteries by Li1.13Mn0.47Ni0.2Co0.2O2 coating[J]. Ionics, 2020, 26(9): 4455-4462.
|
18 |
LIU J, REEJA-JAYAN B, MANTHIRAM A. Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. The Journal of Physical Chemistry C, 2010, 114(20): 9528-9533.
|
19 |
QIU X Y, ZHUANG Q C, ZHANG Q Q, et al. Investigation of layered LiNi1/3Co1/3Mn1/3O2 cathode of lithium ion battery by electrochemical impedance spectroscopy[J]. Journal of Electroanalytical Chemistry, 2012, 687: 35-44.
|