Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 1-12.doi: 10.19799/j.cnki.2095-4239.2024.0712
• Energy Storage Materials and Devices • Next Articles
Xunchang JIANG1,2(), Kelin YU3, Daxiang YANG1,2,4(
), Minhui LIAO5, Yang ZHOU5
Received:
2024-07-29
Revised:
2024-08-08
Online:
2025-01-28
Published:
2025-02-25
Contact:
Daxiang YANG
E-mail:2641996850@qq.com;6669203@qq.com
CLC Number:
Xunchang JIANG, Kelin YU, Daxiang YANG, Minhui LIAO, Yang ZHOU. Preparation of PDOL-based solid electrolyte by in-situ polymerization and its application in lithium metal batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 1-12.
Fig.8
(a) EIS impedance spectra of the Li|PDOL@YPVDF-CSE|Li after being left to stand for different days; (b) PDOL@PVDF-SPE; (c) PDOL@YPVDF-CSE; (d) Li| PDOL@PVDF-SPE |Li and Li| PDOL@YPVDF-CSE |The charge discharge cycle curve of Li batteries; (e) Li| PDOL@YPVDF-CSE |XPS spectra of F and Zr elements on the electrolyte surface of Li batteries before and after 100 cycles"
Fig.9
(a) LFP| PDOL@PVDF-SPE |Li and LFP| PDOL@YPVDF-CSE |Li's magnification cycle diagram; (b)LFP| PDOL@PVDF-SPE |Li and LFP| PDOL@YPVDF-CSE |Li's charge discharge cycle curve at a current of 0.5 C; (c)LFP| PDOL@PVDF-SPE |Li and LFP| PDOL@YPVDF-CSE |Voltage specific capacity curve of Li at different cycle times; (d) LFP| PDOL@YPVDF-CSE |Charge discharge cycle curve of Li at a current of 2 C"
1 | LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153. DOI: 10.1016/j.ensm.2019.05.019. |
2 | SUN C W, LIU J, GONG Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386. DOI: 10.1016/j.nanoen.2017.01.028. |
3 | DOUX J M, NGUYEN H, TAN D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. DOI: 10.1002/aenm.201903253. |
4 | IHRIG M, FINSTERBUSCH M, TSAI C L, et al. Low temperature sintering of fully inorganic all-solid-state batteries-Impact of interfaces on full cell performance[J]. Journal of Power Sources, 2021, 482: 228905. DOI: 10.1016/j.jpowsour.2020.228905. |
5 | LIANG J N, HWANG S, LI S, et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries[J]. Nano Energy, 2020, 78: 105107. DOI: 10.1016/j.nanoen.2020.105107. |
6 | XIAO Y R, TURCHENIUK K, NARLA A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries[J]. Nature Materials, 2021, 20(7): 984-990. DOI: 10.1038/s41563-021-00943-2. |
7 | ATES T, KELLER M, KULISCH J, et al. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte[J]. Energy Storage Materials, 2019, 17: 204-210. DOI: 10.1016/j.ensm.2018.11.011. |
8 | LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): eaat5383. DOI: 10.1126/sciadv.aat5383. |
9 | LIU C Y, WANG S, WU X Y, et al. In situ construction of zwitterionic polymer electrolytes with synergistic cation-anion regulation functions for lithium metal batteries[J]. Advanced Functional Materials, 2024, 34(1): 2307248. DOI: 10.1002/adfm.202307248. |
10 | HUO S D, SHENG L, XUE W D, et al. Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: A review[J]. Advanced Energy Materials, 2023, 13(15): 2204343. DOI: 10.1002/aenm.202204343. |
11 | MI Y Q, DENG W, HE C H, et al. In situ polymerized 1, 3-dioxolane electrolyte for integrated solid-state lithium batteries[J]. Angewandte Chemie (International Ed), 2023, 62(12): e202218621. DOI: 10.1002/anie.202218621. |
12 | 苑志祥, 张浩, 胡思伽, 等. 离子聚合原位固态化构建高安全锂电池固态聚合物电解质的研究进展[J]. 化学学报, 2023, 81(8): 1064-1080. |
YUAN Z X, ZHANG H, HU S J, et al. Research progress of ion-initiated in situ generated solid polymer electrolytes for high-safety lithium batteries[J]. Acta Chimica Sinica, 2023, 81(8): 1064-1080. | |
13 | DENG B, JING M X, LI L X, et al. Nano-zirconia boosting the ionic conductivity and lithium dendrite inhibition ability of a poly(1, 3-dioxolane) solid electrolyte for high-voltage solid-state lithium batteries[J]. Sustainable Energy & Fuels, 2021, 5(21): 5461-5470. DOI: 10.1039/D1SE01132D. |
14 | REN W H, ZHANG Y F, LV R X, et al. In-situ formation of quasi-solid polymer electrolyte for improved lithium metal battery performances at low temperatures[J]. Journal of Power Sources, 2022, 542: 231773. DOI: 10.1016/j.jpowsour.2022.231773. |
15 | ZHU J, ZHANG J P, ZHAO R Q, et al. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries[J]. Energy Storage Materials, 2023, 57: 92-101. DOI: 10.1016/j.ensm.2023.02.012. |
16 | GENG Z, HUANG Y L, SUN G C, et al. In-situ polymerized solid-state electrolytes with stable cycling for Li/LiCoO2 batteries[J]. Nano Energy, 2022, 91: DOI: 10.1016/j.nanoen.2021.106679. |
17 | YANG H, ZHANG B, JING M X, et al. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries[J]. Advanced Energy Materials, 2022, 12(39): DOI: 10.1002/aenm.202201762. |
18 | 王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2): 327-344. |
WANG Q Y, CHU G, ZHANG J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell[J]. Energy Storage Science and Technology, 2018, 7(2): 327-344. | |
19 | BODKHE S, RAJESH P S M, KAMLE S, et al. Beta-phase enhancement in polyvinylidene fluoride through filler addition: Comparing cellulose with carbon nanotubes and clay[J]. Journal of Polymer Research, 2014, 21(5): 434. DOI: 10.1007/s10965-014-0434-3. |
20 | LIU R, YANG Z, LI J, et al. Study on the mechanism of action of various metal ions on the surface of monazite[J]. Physicochemical Problems of Mineral Processing, 2024, 60(2): DOI:10.37190/ppmp/185901. |
21 | MA Q, YUE J P, FAN M, et al. Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries[J]. Angewandte Chemie (International Ed), 2021, 60(30): 16554-16560. DOI: 10.1002/anie.202103850. |
22 | ZHOU J Q, QIAN T, LIU J, et al. High-safety all-solid-state lithium-metal battery with high-ionic-conductivity thermoresponsive solid polymer electrolyte[J]. Nano Letters, 2019, 19(5): 3066-3073. DOI: 10.1021/acs.nanolett.9b00450. |
23 | ZHAO Y, ZHOU T, BASTER D, et al. Targeted functionalization of cyclic ether solvents for controlled reactivity in high-voltage lithium metal batteries[J]. ACS Energy Letters, 2023, 8(7): 3180-3187. |
24 | ABDELMAOULA A E, SHU J, CHENG Y, et al. Core-shell MOF-in-MOF nanopore bifunctional host of electrolyte for high-performance solid-state lithium batteries[J]. Small Methods, 2021, 5(8): e2100508. DOI: 10.1002/smtd.202100508. |
25 | TANG W J, TANG S, GUAN X Z, et al. High-performance solid polymer electrolytes filled with vertically aligned 2D materials[J]. Advanced Functional Materials, 2019, 29(16): 1900648. DOI: 10.1002/adfm.201900648. |
26 | ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): 1605989. DOI: 10.1002/adfm.201605989. |
27 | 梁大宇, 包婷婷, 高田慧, 等. 锂离子电池固态电解质界面膜(SEI)的研究进展[J]. 储能科学与技术, 2018, 7(3): 418-423. DOI: 10.12028/j.issn.2095-4239.2018.0059. |
LIANG D Y, BAO T T, GAO T H, et al. Research progress of lithium ion battery solid-electrolyte interface(SEI)[J]. Energy Storage Science and Technology, 2018, 7(3): 418-423. DOI: 10.12028/j.issn.2095-4239.2018.0059. | |
28 | LIANG H M, WANG Z X, GUO H J, et al. Improvement in the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Li2ZrO3 coating[J]. Applied Surface Science, 2017, 423: 1045-1053. DOI: 10.1016/j.apsusc.2017.06.283. |
[1] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
[2] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[3] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[4] | Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB [J]. Energy Storage Science and Technology, 2024, 13(2): 381-389. |
[5] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
[6] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[7] | Jin WANG, Shaofei ZHANG, Jinfeng SUN, Tiantian LI. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489. |
[8] | Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408. |
[9] | Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite [J]. Energy Storage Science and Technology, 2023, 12(3): 698-709. |
[10] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[13] | Zhun NIU, Xueyan ZHANG, Jiawei FENG, Liguo JIN, Yonghui SHI, Jiayi YU, Zichao LI, Zhijun FENG. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites [J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477. |
[14] | Minhui LIAO, Daxiang YANG, Yang ZHOU, Renjie WAN, Ruiping LIU, Qiang WANG. Preparation and properties study of glass fiber cloth-based multilayer composite solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(10): 3090-3099. |
[15] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||