Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1480-1489.doi: 10.19799/j.cnki.2095-4239.2023.0185
• Special Issue on Key Materials and Recycling Technologies for Energy Storage Batteries • Previous Articles Next Articles
Jin WANG(), Shaofei ZHANG(), Jinfeng SUN, Tiantian LI
Received:
2023-03-28
Revised:
2023-04-13
Online:
2023-05-05
Published:
2023-05-29
Contact:
Shaofei ZHANG
E-mail:1602392135@qq.com;zhang_SF@hebust.edu.cn
CLC Number:
Jin WANG, Shaofei ZHANG, Jinfeng SUN, Tiantian LI. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance[J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489.
Fig. 5
Electrochemical performance under three-electrode system: (a) CV curves of different MPO-NiCuMn samples, (b) CV curves of MPO-Ni15Cu15Mn70 sample at various scan rates, (c) b values calculation of MPO-Ni15Cu15Mn70 sample from the relationship between lg i and lg v, (d) Capacitive contribution of MPO-Ni15Cu15Mn70 sample at scan rate of 50 mV/s, (e) Capacitive and diffusion contribution of MPO-Ni15Cu15Mn70 sample at different scan rates, (f) Discharge curves of different MPO-NiCuMn samples at 10 mA/cm2, (g) GCD curves of MPO-Ni15Cu15Mn70 sample at various current density, (h) Rate performance, (i) EIS curves"
1 | 何凤荣, 张啟文, 郭德超, 等. 电极结构对(NCM+AC)/HC混合型电容器电性能的影响[J]. 储能科学与技术, 2022, 11(7): 2051-2058. |
HE F R, ZHANG Q W, GUO D C, et al. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor[J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. | |
2 | AHN J, SONG Y, KIM Y J, et al. Redox-active ligand-mediated assembly for high-performance transition metal oxide nanoparticle-based pseudocapacitors[J]. Chemical Engineering Journal, 2023, 455: 140742. |
3 | BREZESINSKI T, WANG J, TOLBERT S H, et al. Next generation pseudocapacitor materials from sol-gel derived transition metal oxides[J]. Journal of Sol-Gel Science and Technology, 2011, 57(3): 330-335. |
4 | CUI M J, MENG X K. Overview of transition metal-based composite materials for supercapacitor electrodes[J]. Nanoscale Advances, 2020, 2(12): 5516-5528. |
5 | DIONIGI F, ZHU J, ZENG Z H, et al. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides[J]. Angewandte Chemie, 2021, 133(26): 14567-14578. |
6 | FU W B, ZHAO E B, REN X L, et al. Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors[J]. Advanced Energy Materials, 2018, 8(18): 1703454. |
7 | GHADIMI A M, GHASEMI S, OMRANI A, et al. Nickel cobalt LDH/graphene film on nickel-foam-supported ternary transition metal oxides for supercapacitor applications[J]. Energy & Fuels, 2023, 37(4): 3121-3133. |
8 | LANG X Y, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4): 232-236. |
9 | LIU W F, ZHANG Z, ZHANG Y N, et al. Interior and exterior decoration of transition metal oxide through Cu0/Cu+ Co-doping strategy for high-performance supercapacitor[J].Nano-Micro Letters, 2021, 13(1): 1-14. |
10 | MA Y P, XIE X B, YANG W Y, et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 906-924. |
11 | QIU H J, FANG G, GAO J J, et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction[J]. ACS Materials Letters, 2019, 1(5): 526-533. |
12 | SNYDER J, ASANITHI P, DALTON A B, et al. Stabilized nanoporous metals by dealloying ternary alloy precursors[J]. Advanced Materials, 2008, 20(24): 4883-4886. |
13 | YAO A Y, YANG H, WANG J Q, et al. Flexible supercapacitor electrodes fabricated by dealloying nanocrystallized Al-Ni-Co-Y-Cu metallic glasses[J]. Journal of Alloys and Compounds, 2019, 772: 164-172. |
14 | WANG Z C, KANG J L, ZHANG S F, et al. Enhanced pseudocapacitance of amorphous oxy-hydroxides epitaxially grown on intermetallics nanofoam[J]. Journal of Alloys and Compounds, 2019, 788: 961-966. |
15 | ZHANG S F, DU B N, LI T T, et al. Self-combustion induced hierarchical nanoporous alloy transition toward high area property electrode for supercapacitor[J]. Journal of Alloys and Compounds, 2022, 900: 163443. |
16 | ZHANG S F, ZHANG Z J, LI H W, et al. Ultrahigh areal capacity of self-combusted nanoporous NiCuMn/Cu flexible anode for Li-ion battery[J]. Chemical Engineering Journal, 2020, 383: 123097. |
17 | FORGHANI M, DONNE S W. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior[J]. Journal of the Electrochemical Society, 2018, 165(3): A664-A673. |
18 | GOGOTSI Y, PENNER R. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like?[J]. ACS Nano, 2018, 12(3): 2081-2083. |
19 | IQBAL M Z, HAIDER S S, SIDDIQUE S, et al. Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices[J]. Journal of Energy Storage, 2020, 27: 101056. |
20 | 韩俊伟, 肖菁, 陶莹, 等. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术,2022, 11(6): 1865-1873. |
HAN J W, XIAO J, TAO Y, et al. Compact energy storage: Methodology with graphenes and the applications[J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. | |
21 | ZHANG W L, GUO R, SUN J, et al. Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth[J]. Journal of Colloid and Interface Science, 2019, 553: 705-712. |
22 | ZHOU J S, HOU L, LUAN S R, et al. Nitrogen codoped unique carbon with 0.4 nm ultra-micropores for ultrahigh areal capacitance supercapacitors[J]. Small, 2018, 14(36): 1801897. |
23 | YASIN A S, MOHAMED A Y, MOHAMED I M A, et al. Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3D graphene for capacitive deionization[J]. Chemical Engineering Journal, 2019, 371: 166-181. |
24 | YAVUZ A, KAPLAN K, BEDIR M. Metal oxides composite electrode with high areal capacitance formed by thermal oxidation of stainless steel mesh[J].Journal of Solid State Electrochemistry, 2022, 26(6/7): 1333-1347. |
[1] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[2] | Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408. |
[3] | Wenzhe HAN, Qingsong LAI, Xuanwen GAO, Wenbin LUO. Advances toward manganese-based layered oxide cathodes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1364-1379. |
[4] | Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite [J]. Energy Storage Science and Technology, 2023, 12(3): 698-709. |
[5] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
[6] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[7] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[8] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[9] | Zhun NIU, Xueyan ZHANG, Jiawei FENG, Liguo JIN, Yonghui SHI, Jiayi YU, Zichao LI, Zhijun FENG. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites [J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477. |
[10] | Jian YIN, Jiling DONG, Hao DING, Fang LI. Research progress of transition metal oxide anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001. |
[11] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[12] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[13] | Chunyan YANG, Yunlong MA, Xiaoqiong FENG, Shiying ZHANG, Changsheng AN, Jingfeng LI. Research progress of carbon-based materials in aluminum-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 432-439. |
[14] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[15] | Jixian WANG, Sikan PENG, Wenzheng NAN, Xiang CHEN, Chen WANG, Shaojiu YAN, Shenglong DAI. Preparation of graphene-coated Li1.22Mn0.52Ni0.26O2 using a spray drying method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 111-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||