Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 995-1001.doi: 10.19799/j.cnki.2095-4239.2020.0412
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jian YIN1(), Jiling DONG1(), Hao DING2, Fang LI3
Received:
2020-12-24
Revised:
2021-01-24
Online:
2021-05-05
Published:
2021-04-30
Contact:
Jiling DONG
E-mail:1109858692@qq.com;dongjiling@cqust.edu.cn
CLC Number:
Jian YIN, Jiling DONG, Hao DING, Fang LI. Research progress of transition metal oxide anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 995-1001.
1 | 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术: 化学电源技术丛书[M]. 北京: 化学工业出版社, 2011. |
2 | 王晓波, 赵青山, 程智年, 等. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677. |
WANG X B, ZHAO Q S, CHENG Z N, et al. Design, synthesis and application of high-performance carbon-based energy storage materials[J]. CIESC Journal, 2020, 71(6): 2660-2677. | |
3 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
4 | POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499. |
5 | ZHANG J J, YU A S. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries[J]. Science Bulletin, 2015, 60(9): 823-838. |
6 | RAHMAN M M, WANG J Z, WEXLER D, et al. Silver-coated TiO2 nanostructured anode materials for lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2010, 14(4): 571-578. |
7 | KOU T Y, YAO B, LIU T, et al. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(33): 17151-17173. |
8 | JIANG J, LI Y, LIU J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials, 2012, 24(38): 5166-5180. |
9 | YAO S, SHI Z, ZHANG X, et al. Synthesis and electrochemical properties of α-Fe2O3 porous microrods as anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 794: 333-340. |
10 | YE J C, BAUMGAERTEL A C, WANG Y M, et al. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries[J]. ACS Nano, 2015, 9(2): 2194-2202. |
11 | HUANG S Z, JIN J, CAI Y, et al. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries[J]. Nanoscale, 2014, 6(12): 6819-6827. |
12 | HUANG S Z, CAI Y, JIN J, et al. Unique walnut-shaped porous MnO2/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability[J]. Journal of Materials Chemistry, 2016, 4(11): 4264-4272. |
13 | LI Y, FU Z Y, SU B L, et al. Hierarchically structured porous materials for energy conversion and storage[J]. Advanced Functional Materials, 2012, 22(22): 4634-4667. |
14 | YUE J, GU X, CHEN L, et al. General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(41): 17421-17426. |
15 | XU X, CAO R, JEONG S, et al. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries[J]. Nano Letters, 2012, 12(9): 4988-4991. |
16 | LI J, LI Z, NING F, et al. Ultrathin mesoporous Co3O4 nanosheet arrays for high-performance lithium-ion batteries[J]. ACS Omega, 2018, 3(2): 1675-1683. |
17 | LI T, ZOU H L, FU J X, et al. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance[J]. Advanced Functional Materials, 2010, 20: 617-623. |
18 | HAN W J, QIN X Y, WU J X, et al. Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries[J]. Nano Research, 2018, 11(2): 892-904. |
19 | LEI C, HAN F, LI D, et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes[J]. Nanoscale, 2013, 5(3): 1168-1175. |
20 | LEE S W, LEE C W, YOON S B, et al. Superior electrochemical properties of manganese dioxide/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries[J]. Journal of Power Sources, 2016, 312(30): 207-215. |
21 | WANG, Z, LUAN D Y, HU Y, et al. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability[J]. Energy and Environmental Science, 2012, 5: 5252-5256. |
22 | KIM N Y, LEE G, CHOI J. Fast-charging and high volumetric capacity anode based on Co3O4/CuO@TiO2 composites for lithium-ion batteries[J]. Chemistry, 2018, 24(71): 19045-19052. |
23 | LI W, SHANG K, LIU Y, et al. A novel sandwich-like Co3O4/TiO2 composite with greatly enhanced electrochemical performance as anode for lithium ion batteries[J]. Electrochimica Acta, 2015, 174: 985-991. |
24 | YUAN Y F, CHEN F, YE L W, et al. Construction of Co3O4@TiO2 heterogeneous mesoporous hollow nanocage-in-nanocage from metal-organic frameworks with enhanced lithium storage properties[J]. Journal of Alloys and Compounds, 2019, 790: 814-821. |
25 | WANG D X, WANG Y, LI Q Y, et al. Urchin-like α-Fe2O3/MnO2, hierarchical hollow composite microspheres as lithium-ion battery anodes[J]. Journal of Power Sources, 2018, 393: 186-192. |
26 | ZHANG Y L, CAO W Q, CAI Y Z, et al. Rational design of NiFe2O4-rGO by tuning the compositional chemistry and its enhanced performance for a Li-ion battery anode[J]. Inorganic Chemistry Frontiers, 2019, 6(4): 961-968. |
27 | FENG D Y, YANG H, GUO X Z, et al. 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries[J]. Chemical Engineering Journal, 2019, 355: 687-696. |
28 | WANG L, BOCK D C, LI J, et al. Synthesis and characterization of CuFe2O4 nano/submicron wire-carbon nanotube composites as binder-free anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8770-8785. |
29 | FU J X, WONG W T, LIU W R. Temperature effects on a nano-porous ZnCo2O4 anode with excellent capability for Li-ion batteries[J]. RSC Advances, 2015, 5(93): 75838-75845. |
30 | MA J J, WANG H J, YANG X, et al. Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frame works as anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 12038-12043. |
31 | CHU K N, LI Z Q, XU S K, et al. MOF-derived hollow NiCo2O4 nanowires as stable Li-ion battery anodes[J]. Dalton Transactions, 2020, 49(31): 10808-10815. |
32 | MUSA N, WOO H J, TEO L P, et al. Optimization of Li2SnO3 synthesis for anode material application in Li-ion batteries[J]. Materials Today: Proceedings, 2017, 4(4): 5169-5177. |
33 | DENG S, ZHU H, WANG G, et al. Boosting fast energy storage by synergistic engineering of carbon and deficiency[J]. Nature Communications, 2020, 11(1): 132-143. |
34 | SHEN S, GUO W, XIE D, et al. A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb2O7-based core/shell arrays[J]. Journal of Materials Chemistry A, 2018, 6(41): 20195-20204. |
35 | ISLAM M, ALI G, JEONG M G, et al. Study on the electrochemical reaction mechanism of NiFe2O4 as a high-performance anode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14833-14843. |
[1] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[2] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[3] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[4] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[5] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[6] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[7] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[8] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
[9] | Tingting HAN, Yuxi WU, Ziheng XIE, Xiuxia MENG, Jinjin ZHANG, Yujiao XIE, Fangyong YU, Naitao YANG. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942. |
[10] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[11] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[12] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
[13] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
[14] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[15] | Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(3): 958-973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||