Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 698-709.doi: 10.19799/j.cnki.2095-4239.2022.0669
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yuting ZHU(), Gongqin YAN(), Yuqian LIN
Received:
2022-11-11
Revised:
2022-12-09
Online:
2023-03-05
Published:
2022-12-29
Contact:
Gongqin YAN
E-mail:993847379@qq.com;ygq@gxust.edu.cn
CLC Number:
Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite[J]. Energy Storage Science and Technology, 2023, 12(3): 698-709.
1 | FAIZAN M, HUSSAIN S, VIKRAMAN D, et al. MoS2@Mo2C hybrid nanostructures formation as an efficient anode material for lithium-ion batteries[J]. Journal of Materials Research and Technology, 2021, 14: 2382-2393. |
2 | SENTHIL C, AMUTHA S, GNANAMUTHU R, et al. Metallic 1T MoS2 overlapped nitrogen-doped carbon superstructures for enhanced sodium-ion storage[J]. Applied Surface Science, 2019, 491: 180-186. |
3 | JIA B R, YU Q Y, ZHAO Y Z, et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage[J]. Advanced Functional Materials, 2018, 28(40): doi: 10.1002/adfm.201803409. |
4 | MA X X, LI N, LIU S K, et al. Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes[J]. Journal of Solid State Electrochemistry, 2018, 22(9): 2801-2809. |
5 | ZHU Z Q, TANG Y X, LV Z S, et al. Fluoroethylene carbonate enabling a robust LiF-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage[J]. Angewandte Chemie (International Ed in English), 2018, 57(14): 3656-3660. |
6 | WU J X, CIUCCI F, KIM J K. Molybdenum disulfide based nanomaterials for rechargeable batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2020, 26(29): 6296-6319. |
7 | XIE J R, ZHU K J, MIN J, et al. In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries[J]. Ionics, 2019, 25(4): 1487-1494. |
8 | LI Z Y, OTTMANN A, SUN Q, et al. Hierarchical MoS2-carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage[J]. Journal of Materials Chemistry A, 2019, 7(13): 7553-7564. |
9 | LONG F, CHEN Y, WU C H, et al. Unique three-dimensional hierarchical heterogeneous MoS2/graphene structures as a high-performance anode material for lithium-ion batteries[J]. Ionics, 2021, 27(5): 1977-1986. |
10 | CHOI M, HWANG J, SETIADI H, et al. One-pot synthesis of molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites and their high electrochemical performance as an anode in lithium ion batteries[J]. The Journal of Supercritical Fluids, 2017, 127: 81-89. |
11 | ZHAO Y, XU L, YAN J, et al. Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2017, 726: 608-617. |
12 | QU B, SUN Y, LIU L L, et al. Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries[J]. Scientific Reports, 2017, 7: doi: 10.1038/srep42772. |
13 | QIN S, LEI W W, LIU D, et al. Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance[J]. Journal of Materials Chemistry A, 2016, 4(4): 1440-1445. |
14 | WANG J C, ZHANG L Y, SUN K, et al. Improving ionic/electronic conductivity of MoS2 Li-ion anode via Manganese doping and structural optimization[J]. Chemical Engineering Journal, 2019, 372: 665-672. |
15 | XIA S S, WANG Y R, LIU Y, et al. Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties[J]. Chemical Engineering Journal, 2018, 332: 431-439. |
16 | SHAO X J, WANG K D, PANG R, et al. Lithium intercalation in graphene/MoS2 composites: First-principles insights[J]. The Journal of Physical Chemistry C, 2015, 119(46): 25860-25867. |
17 | LIU Z X, GE D H, YANG P. Structure and interfacial properties investigation for ZnO/graphene interface[J]. Materials Chemistry and Physics, 2019, 229: 1-5. |
18 | ZHANG X E, ZHAO R F, WU Q H, et al. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance[J]. ACS Nano, 2017, 11(8): 8429-8436. |
19 | YOU Y, YE Y W, WEI M L, et al. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2019, 355: 671-678. |
20 | SUN Y M, HU X L, YU J C, et al. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2870-2877. |
21 | LIU B T, WANG S W, MO Q H, et al. Epitaxial MoS2 nanosheets on nitrogen doped graphite foam as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Electrochimica Acta, 2018, 292: 407-418. |
22 | WAN Z M, SHAO J, YUN J J, et al. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2014, 10(23): 4975-4981. |
23 | WEI X, LIN C C, WU C W, et al. Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-33790-z. |
24 | LIU Y C, ZHAO Y P, JIAO L F, et al. A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 13109-13115. |
25 | DING S J, CHEN JUN SONG, DAVID LOU X W. Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties[J]. Chemistry-A European Journal, 2011, 17(47): 13142-13145. |
27 | CHAN K T, NEATON J B, COHEN M L. First-principles study of metal adatom adsorption on graphene[J]. Physical Review B, 2008, 77(23): doi: 10.1103/PhysRevB.77.235430. |
28 | PENG B, CHENG F Y, TAO Z L, et al. Lithium transport at silicon thin film: Barrier for high-rate capability anode[J]. The Journal of Chemical Physics, 2010, 133(3): doi: 10.1063/1.3462998. |
29 | SHAO Y F, GONG P L, PAN H, et al. H-/ dT-MoS2-on-MXene heterostructures as promising 2D anode materials for lithium-ion batteries: Insights from first principles[J]. Advanced Theory and Simulations, 2019, 2(8): doi: 10.1002/adts.201900045. |
30 | ZHANG X M, YU Z M, WANG S S, et al. Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(39): 15224-15231. |
31 | CUI Y H, ZHAO Y, CHEN H, et al. First-principles study of MoO3/graphene composite as cathode material for high-performance lithium-ion batteries[J]. Applied Surface Science, 2018, 433: 1083-1093. |
[1] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[4] | Zhun NIU, Xueyan ZHANG, Jiawei FENG, Liguo JIN, Yonghui SHI, Jiayi YU, Zichao LI, Zhijun FENG. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites [J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477. |
[5] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[6] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[7] | Chunyan YANG, Yunlong MA, Xiaoqiong FENG, Shiying ZHANG, Changsheng AN, Jingfeng LI. Research progress of carbon-based materials in aluminum-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 432-439. |
[8] | Jixian WANG, Sikan PENG, Wenzheng NAN, Xiang CHEN, Chen WANG, Shaojiu YAN, Shenglong DAI. Preparation of graphene-coated Li1.22Mn0.52Ni0.26O2 using a spray drying method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 111-117. |
[9] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[10] | Jiajing ZHU, Yun GAO. Research progress of water-in-salt electrolytes [J]. Energy Storage Science and Technology, 2020, 9(S1): 13-22. |
[11] | Caiwen WU, Lijing HUANG, Chunyang ZOU, Bowen LI, Wenjuan WU. Research progress of the lignin in application energy storage [J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746. |
[12] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[13] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[14] | XIONG Xiaolin, YUE Jinming, ZHOU Anxing, SUO Liumin, HU Yongsheng, LI Hong, HUANG Xuejie. Electrochemical performance of spinel LiMn2O4 inWater-in-salt aqueouselectrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 375-384. |
[15] | REN Ya, WANG Ying, XU Zhiyu, YAN Xiao, HUANG Bixiong. Graphite modified LiNi1/3Co1/3Mn1/3O2 cathodes with improved performance for lithium-ion battery [J]. Energy Storage Science and Technology, 2019, 8(5): 935-940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||