Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (S1): 13-22.doi: 10.19799/j.cnki.2095-4239.2020.0263
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2020-08-17
Revised:
2020-09-03
Online:
2020-12-05
Published:
2020-12-02
Contact:
Yun GAO
E-mail:1799047518@qq.com;gaoyun@ncst.edu.cn
CLC Number:
Jiajing ZHU, Yun GAO. Research progress of water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2020, 9(S1): 13-22.
1 | YAN Xiaojun, ZHAO Xiaoli, LIU Congcong, et al. High-voltage bi-redox lithium-ion capacitor enabled by energizing free water in "water-in-salt" electrolyte[J]. Journal of Power Sources, 2019, 423: 331-338. |
2 | SUO Liumin, BORODIN O, GAO Tao, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
3 | 周安行, 蒋礼威, 岳金明, 等. Water-in-salt锂离子电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 972-986. |
ZHOU Anxing, JIANG Liwei, YUE Jinming, et al. Research progress on lithium based water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2018, 7(6): 972-986. | |
4 | LUX S F, TERBORG L, HACHMOELLER O, et al. LiTFSI stability in water and its possible use in aqueous lithium-ion batteries: pH dependency, electrochemical window and temperature stability[J]. Journal of the Electrochemical Society, 2013, 160(10): A1694-A1700. |
5 | PAPPENFUS T M, HENDERSON W A, OWENS B B, et al. Complexes of lithium imide salts with tetraglyme and their polyelectrolyte composite materials[J]. Journal of the Electrochemical Society, 2004, 151(2): A209-A215. |
6 | SUO Liumin, HAN Fudong, FAN Xiulin, et al. "Water-in-salt" electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications[J]. Journal of Materials Chemistry A, 2016, 4(17): 6639-6644. |
7 | LANNELONGUE P, BOUCHAL R, MOURAD E, et al. "Water-in-salt" for supercapacitors: A compromise between voltage, power density, energy density and stability[J]. Journal of the Electrochemical Society, 2018, 165(3): A657-A663. |
8 | 闫小军. 基于电解液功能调控的高电压水系超级电容器研究[D]. 上海: 华东师范大学, 2019. |
YAN Xiaojun. The study of high-voltage aqueous supercapacitors based on functional regulation of electrolytes[D]. Shanghai: East China Normal University, 2019. | |
9 | CHEN Long, ZHANG Jiaxun, LI Qin, et al. A 63 m super-concentrated aqueous electrolyte for high energy Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 968-974. |
10 | SUO Liumin, BORODIN O, SUN Wei, et al. Advanced high-voltage aqueous lithium-ion battery enabled by "water-in-bisalt" electrolyte[J]. Angewandte Chemie International Edition, 2016, 55(25): 7136-7141. |
11 | JIANG Liwei, LIU Lilu, YUE Jinming, et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte[J]. Advanced Materials, 2019, 32(2): doi: 10.1002/adma.201904427. |
12 | BECKER M, KUHNEL R S, BATTAGLIA C. Water-in-salt electrolytes for aqueous lithium-ion batteries with liquidus temperatures below -10 ℃[J]. Chemical Communications, 2019, 55(80): 12032-12035. |
13 | JIANG Liwei, LU Yaxiang, ZHAO Chenglong, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503. |
14 | CHEN Hong, ZHANG Zhongyu, WEI Zhixuan, et al. Use of a water-in-salt electrolyte to avoid organic material dissolution and enhance the kinetics of aqueous potassium ion batteries[J]. Sustainable Energy & Fuels, 2020, 4(1): 128-131. |
15 | KO S, YAMADA Y, YAMADA A. A 62 m K-ion aqueous electrolyte[J]. Electrochemistry Communications, 2020, 116: doi: 10.1016/j.elecom. 2020.106764. |
16 | REBER D, KUHNEL R S, BATTAGLIA C. Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries[J]. ACS Materials Letters, 2019, 1(1): 44-51. |
17 | QIU Feilong, LI Xiang, DENG Han, et al. A concentrated ternary‐salts electrolyte for high reversible Li metal battery with slight excess Li[J]. Advanced Energy Materials, 2018, 9(6): doi: 10.1002/aenm.201803372. |
18 | TIAN Zengying, DENG Wenjun, WANG Xusheng, et al. Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors[J]. Functional Materials Letters, 2017, 10(6): doi: 10.1142/S1793604717500813. |
19 | HAN Jin, MARIANI A, ZHANG Huang, et al. Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries[J]. Energy Storage Materials, 2020, 30: 196-205. |
20 | LEONARD D P, WEI Zhixuan, CHEN Gang, et al. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Letters, 2018, 3(2): 373-374. |
21 | HAN Jin, ZHANG Huang, VARZI A, et al. Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries[J]. ChemSusChem, 2018, 11(21): 3704-3707. |
22 | LUKATSKAYA M R, FELDBLYUM J I, MACKANIC D G, et al. Concentrated mixed cation acetate "water-in-salt" solutions as green and low-cost high voltage electrolytes for aqueous batteries[J]. Energy & Environmental Science, 2018, 11(10): 2876-2883. |
23 | CHEN Shigang, LAN Rong, HUMPHREYS J, et al. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery[J]. Energy Storage Materials, 2020, 28: 205-215. |
24 | BU Xudong, SU Lijun, DOU Qingyun, et al. A low-cost "water-in-salt" electrolyte for a 2.3 V high-rate carbon-based supercapacitor[J]. Journal of Materials Chemistry A, 2019, 7(13): 7541-7547. |
25 | LEE M H, KIM S J, CHANG D H, et al. Toward a low-cost high-voltage sodium aqueous rechargeable battery[J]. Materials Today, 2019, 29: 26-36. |
26 | DOU Qingyun, LU Yulan, SU Lijun, et al. A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor[J]. Energy Storage Materials, 2019, 23: 603-609. |
27 | GUO Junhong, MA Yalan, ZHAO Kun, et al. High-performance and ultra-stable aqueous supercapacitors based on a green and low cost "water-in-salt" electrolyte[J]. ChemElectroChem, 2019, 6(21): 5433-5438. |
28 | ZHANG Chong, HOLOUBEK J, WU Xianyong, et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode[J]. Chemical Communications, 2018, 54(100): 14097-14099. |
29 | HONG J J, ZHU Liangdong, CHEN Cheng, et al. A dual plating battery with the iodine/[ZnIx(OH2)4-x]2-x cathode[J]. Angewandte Chemie International Edition, 2019, 58(44): 15910-15915. |
30 | IAMPRASERTKUN P, EJIGU A, DRYFE R A W. Understanding the electrochemistry of "water-in-salt" electrolytes: Basal plane highly ordered pyrolytic graphite as a model system[J]. Chemical Science, 2020, 11(27): 6978-6989. |
31 | DOU Qingyun, LEI Shulai, WANG Dawei, et al. Safe and high-rate supercapacitors based on "acetonitrile/water in salt" hybrid electrolyte[J]. Energy & Environmental Science, 2018, 11(11): 3212-3219. |
32 | CHEN Jiawei, VATAMANU J, XING Lidan, et al. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes[J]. Advanced Energy Materials, 2019, 10(3): doi: 10.1002/aenm.201902654. |
33 | WANG Fei, BORODIN O, DING M S, et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries[J]. Joule, 2018, 2(5): 927-937. |
34 | DONG Chenhao, KANG Wei, AN Cuihua. A safe propylene carbonate/water hybrid electrolyte for supercapacitors[J]. New Journal of Chemistry, 2020, 44(2): 556-561. |
35 | XIAO Dewei, DOU Qingyun, ZHANG Li, et al. Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor[J]. Advanced Functional Materials, 2019, 29(42): doi: 10.1002/adfm.201904136. |
36 | REBER D, JIMENEZ-RIOBOO R J, LEECH D, et al. Aqueous eutectic-in-salt electrolytes for high-energy-density supercapacitors with an operational temperature window of 100 ℃, from -35 to +65 ℃[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29181-29193. |
37 | YANG Yangyuchen, DAVIES D M, YIN Yijie, et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes[J]. Joule, 2019, 3(8): 1986-2000. |
38 | WANG Weijian, DENG Wenjun, WANG Xusheng, et al. A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors[J]. Chemical Communications, 2020, 56(57): 7965-7968. |
39 | GAO Yun, QIN Zhanbin, GUAN Li, et al. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures[J]. Chemical Communications, 2015, 51(54): 10819-10822. |
40 | DOU Qingyun, WANG Yue, WANG Aiping, et al. "Water in salt/ionic liquid" electrolyte for 2.8 V aqueous lithium-ion capacitor[J]. Science Bulletin, 2020, 65(21): 1812-1822. |
41 | YAN Jingjing, ZHU Dazhang, LYU Yaokang, et al. Water-in-salt electrolyte ion matched N/O codoped porous carbons for high-performance supercapacitors[J]. Chinese Chemical Letters, 2020, 31(2): 579-582. |
42 | ZHANG Ming, LI Yaoting, SHEN Zhongrong. "Water-in-salt" electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes[J]. Journal of Power Sources, 2019, 414: 479-485. |
43 | MA Mingyu, SHI Zude, LI Yan, et al. High-performance 3 V "water in salt" aqueous asymmetric supercapacitors based on VN nanowire electrodes[J]. Journal of Materials Chemistry A, 2020, 8(9): 4827-4835. |
44 | YANG Chongyin, CHEN Ji, JI Xiao, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250. |
45 | KUNDURACI M, MUTLU R N, GIZIR A M. Electrochemical behavior of LiNi0.6Mn0.2Co0.2O2 cathode in different aqueous electrolytes[J]. Ionics, 2020, 26(4): 1633-1672. |
46 | DONG Xiaoli, YU Hongchuan, MA Yuanyuan, et al. All-organic rechargeable battery with reversibility supported by "water-in-salt" electrolyte[J]. Chemistry—A European Journal, 2017, 23(11): 2560-2565. |
47 | OKA K, STRIETZEL C, EMANUELSSON R, et al. Characterization of PEDOT-Quinone conducting redox polymers in water-insalt electrolytes for safe and high-energy Li-ion batteries[J]. Electrochemistry Communications, 2019, 105: doi: 10.1016/j.electron.2019.106489. |
48 | SUN Wei, SUO Liumin, WANG Fei, et al. "Water-in-salt" electrolyte enabled LiMn2O4/TiS2 lithium-ion batteries[J]. Electrochemistry Communications, 2017, 82: 71-74. |
49 | WANG Huaiqing, ZHANG Hongzhang, CHENG Yi, et al. All-NASICON LVP-LTP aqueous lithium ion battery with excellent stability and low-temperature performance[J]. Electrochimica Acta, 2018, 278: 279-289. |
50 | XIANG Li, OU Xuewu, WANG Xingyong, et al. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery[J]. Angewandte Chemie International Edition, 2020, 59(41): 17924-17930. |
51 | ZHU Jiaojiao, XU Yongtai, FU Yujun, et al. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries[J]. Small, 2020, 16(17): doi: 10.1002/smll.201905838. |
52 | SUO Liumin, XUE Weijiang, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1156-1161. |
53 | YANG Chongyin, JI Xiao, FAN Xiulin, et al. Flexible aqueous Li-ion battery with high energy and power densities[J]. Advanced Materials, 2017, 29(44): doi: 10.1002/adma.201701972. |
54 | YANG Chongyin, SUO Liumin, BORODIN O, et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(24): 6197-6202. |
55 | DONG Qi, YAO Xiahui, ZHAO Yanyan, et al. Cathodically stable Li-O2 battery operations using water-in-salt electrolyte[J]. Chem, 2018, 4(6): 1345-1358. |
56 | HU Zhiqiu, GUO Yue, JIN Hongchang, et al. A rechargeable aqueous aluminum-sulfur battery through acid activation in water-in-salt electrolyte[J]. Chemical Communications, 2020, 56(13): 2023-2026. |
57 | CHEN Long, CAO Longsheng, JI Xiao, et al. Enabling safe aqueous lithium ion open batteries by suppressing oxygen reduction reaction[J]. Nature Communications, 2020, 11(1): 2638-2645. |
58 | YAMADA Y, WANG Jianhui, KO Seongjae, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
59 | CHEN Shuru, ZHENG Jianming, MEI Donghai, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): doi: 10.1002/adma.201706102. |
60 | REN Xiaodi, ZOU Lianfeng, CAO Xia, et al. High-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. |
61 | FORERO-SABOYA J, HOSSEINI-BAB-ANARI E, ABDELHAMID M E, et al. Water-in-bisalt electrolyte with record salt concentration and widened electrochemical stability window[J]. Journal of Physical Chemistry Letters, 2019, 10(17): 4942-4946. |
62 | YU Zhou, CURTISS L A, WINANS R E, et al. Asymmetric composition of ionic aggregates and the origin of high correlated transference number in water-in-salt electrolytes[J]. Journal of Physical Chemistry Letters, 2020, 11(4): 1276-1281. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[5] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[6] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[7] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[8] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[9] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[10] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[11] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[12] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[13] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[14] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[15] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||