Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1737-1746.doi: 10.19799/j.cnki.2095-4239.2020.0187
• Energy Storage Materials and Devices • Previous Articles Next Articles
Caiwen WU(), Lijing HUANG, Chunyang ZOU, Bowen LI, Wenjuan WU()
Received:
2020-05-22
Revised:
2020-06-08
Online:
2020-11-05
Published:
2020-10-28
Contact:
Wenjuan WU
E-mail:1252885249@qq.com;wenjuanwu@njfu.edu.cn
CLC Number:
Caiwen WU, Lijing HUANG, Chunyang ZOU, Bowen LI, Wenjuan WU. Research progress of the lignin in application energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746.
1 | XIONG Wenlong, YANG Dongjie, ZHONG Ruisheng, et al. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method[J]. Industrial Crops & Products, 2015, 74: 285-292. |
2 | Dan KAI, TAN Mein Jin, CHEE Pei Lin, et al. ChemInform abstract: towards lignin-based functional materials in a sustainable world[J]. ChemInform, 2016, 18(5): 1175-1200. |
3 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
4 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
5 | GOODENOUGH J B, KIM Youngsik. Challenges for rechargeable Li+ batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
6 | INDRA A, SONG Taeseup, PAIK Ungyu. Metal organic framework derived materials: progress and prospects for the energy conversion and storage[J]. Advanced Materials, 2018, 30(39): doi: 10.1002/adma.201705146. |
7 | AHMED S F, KHALID M, RASHMI W. Recent progress in solar thermal energy storage using nanomaterials[J]. Renewable & Sustainable Energy Reviews, 2017, 67(1): 450-460. |
8 | JUNG Hyunsu, PARK Nam Gyu. Perovskite solar cells: from materials to devices[J]. Small, 2015, 11(1): 10-25. |
9 | ESPINOZA-ACOSTA J L, TORRES-CHÁVEZ P I, OLMEDO-MARTÍNEZ J L, et al. Lignin in storage and renewable energy applications: A review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. |
10 | STRASSBERGER Z, TANASE S, ROTHENBERG G. The pros and cons of lignin valorisation in an integrated biorefinery[J]. RSC Advances, 2014, 4(48): 25310-25318. |
11 | ZHANG Jiubing, GE Yuanyuan, QIN Li, et al. Synthesis of a lignin-based surfactant through amination, sulfonation and acylation[J]. Journal of Dispersion Science and Technology, 2018, 39(8): 1140-1143. |
12 | YANG Dongjie, QIN Xueqing, ZHOU Mingsong, et al. Properties of sodium lignosulfonate as dispersant of coal water slurry[J]. Energy Conversion and Management, 2007, 48(9): 2433-2438. |
13 | ARESKOGH D, LI Jiebing, GELLERSTEDT G. Investigation of the molecular weight increase of commercial lignosulfonates by laccase catalysis[J]. Biomacromolecules, 2010, 11(4): 904-910. |
14 | ARESKOGH D, HENRIKSSON G. Immobilisation of laccase for polymerisation of commercial lignosulphonates[J]. Process Biochemistry, 2011, 46(5): 1071-1075. |
15 | UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective[J]. Chemical Reviews, 2016, 116(4): 2275-2306. |
16 | NAKAGAME S, CHANDRA R P, KADLA J F. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin[J]. Biotechnology and Bioengineering, 2011, 108(3): 538-548. |
17 | 周静, 胡立红, 周永红. 酶解木质素的提取及应用研究进展[J]. 化工新型材料, 2015, 43(4): 245-246. |
ZHOU Jing, HU Lihong, ZHOU Yonghong. Extraction and application of enzymatic lignin[J]. New Chemical Materials, 2015, 43(4): 245-246. | |
18 | VISHTAL A G, KRASLAWSKI A. Challenges in industrial applications of technical lignins[J]. Bioresources, 2011, 6(3): 3547-3568. |
19 | BODEN D P. Comparison of methods for adding expander to lead-acid battery plates — Advantages and disadvantages[J]. Journal of Power Sources, 2003, 133(1): 47-51. |
20 | SAITO K, HIRAI N, SHIOTA M, et al. Reaction between lead oxide and lignin in aqueous solution[J]. Journal of Power Sources, 2003, 124(1): 266-270. |
21 | HIRAI N, KUBO S, MAGARA K. Combined cyclic voltammetry and in situ electrochemical atomic force microscopy on lead electrode in sulfuric acid solution with or without lignosulfonate[J]. Journal of Power Sources, 2008, 191(1): 97-102. |
22 | 张兴, 张祖波, 夏诗忠, 等. 木质素类型及添加量对AGM阀控式铅酸蓄电池负极性能的影响研究[J]. 蓄电池, 2015, 52(4): 190-196. |
ZHANG Xing, ZHANG Zhubo, XIA Shizhong, et al. Research on the influence of lignin type and adding amount on negative performance of AGM valved-type lead-acid battery[J]. Accumulator, 2015, 52(4): 190-196. | |
23 | PAVLOV D, MYRVOLD B O, ROGACHEV T, et al. A new generation of highly efficient expander products and correlation between their chemical composition and the performance of the lead-acid battery[J]. Journal of Power Sources, 2000, 85(1): 79-91. |
24 | MYRVOLD B O, PAVLOV D. Multivariate analysis for characterization of expanders[J]. Journal of Power Sources, 2000, 85(1): 92-101. |
25 | 徐小亮, 徐冬明. 铅炭电池负极板制备工艺探讨[J]. 蓄电池, 2018, 55(3): 119-122. |
XU Xiaoliang, XU Dongming. Preparation technology of lead carbon battery negative plate[J]. Accumulator, 2018, 55(3): 119-122. | |
26 | KUMAR S M, ARUN S, MAYAVAN S. Effect of carbon nanotubes with varying dimensions and properties on the performance of lead acid batteries operating under high rate partial state of charge conditions[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100806. |
27 | ZIMÁKOVÁ J, FRYDA D, VACULIÍK S, et al. Examination of impact of lignosulfonates added to the negative active mass of a lead-acid battery electrode[J]. Journal of Energy Storage, 2018, 18(8): 229-238. |
28 | DENG Da. Li-ion batteries: basics, progress, and challenges[J]. Energy Science & Engineering, 2015. 3(5): 385-418. |
29 | JIANG K, CHEN Zonghai, MENG Xiangbo. CuS and Cu2S as cathode materials for lithium batteries: A review[J]. ChemElectroChem, 2019, 6(11): 2825-2840. |
30 | 王欢, 乔庆东, 李琪. 锂离子电池正极材料现状研究[J]. 电源技术, 2019, 43(11): 1887-1890. |
WANG Huan, QIAO Qingdong, LI Qi. Research on the current situation of anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(11): 1887-1890. | |
31 | GNEDENKOV S V, OPRA D P, SINEBRYUKHOV S L, et al. Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3): 903-910. |
32 | YU Faqi, LI Yilin, JIA Meng, et al. Elaborate construction and electrochemical properties of lignin-derived macro-/micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: The effect of sulfur-loading time[J]. Journal of Alloys and Compounds, 2017, 709: 677-685. |
33 | ZHANG He, JIA Dandan, YANG Zewen, et al. Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode[J]. Carbon, 2017, 122: 547-555. |
34 | Bo Ram LEE, Eun Suok OH. Effect of molecular weight and degree of substitution of a sodium-carboxymethyl cellulose binder on Li4Ti5O12 anodic performance[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2013, 117(9): 4404-4409. |
35 | ZHANG Sheng S, XU Kang, JOW T R. Evaluation on a water-based binder for the graphite anode of Li-ion batteries[J]. Journal of Power Sources, 2004, 138(1): 226-231. |
36 | LU Huiran, CORNELL A, ALVARADO F, et al. Lignin as a binder material for eco-friendly Li-ion batteries[J]. Materials (Basel, Switzerland), 2016, 9(3): 127-144. |
37 | LUO Chao, DU Leilei, WU Wei. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12621-12629. |
38 | MA Yue, Chen KAI, Ma JUN. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-Ion batteries[J]. Energy & Environmental Science, 2019, 12(1): 273-280. |
39 | WINSLOW K M, LAUX S J, OWNSEND T G. A review on the growing concern and potential management strategies of waste lithium-ion batteries[J]. Resources Conservation and Recycling, 2018, 129: 263-277. |
40 | 肖琴, 岳勇, 任世杰. 锂离子电池用化学交联型凝胶聚合物电解质的研究进展[J]. 功能高分子学报, 2019, 32(1): 28-44. |
XIAO Qin, YUE Yong, REN Shijie. Progress in the study of chemically crosslinked gel polymer electrolytes for lithium-ion battery[J]. Journal of Functional Polymers, 2019, 32(1): 28-44. | |
41 | ZHU Jiadeng, YAN Chaoyi, ZHANG Xin, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76: doi: 10.1016/j.pecs.2019.100788. |
42 | GONG Shengdong, HUANG Yun, CAO Haijun, et al. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin[J]. Journal of Power Sources, 2016, 307: 624-633. |
43 | LIU Bo, LI Xing, CAO Haijun. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane[J]. Journal of Solid State Electrochemistry, 2018, 22(3): 807-816. |
44 | BARONCINI E A, STANZIONE J F. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes[J]. International Journal of Biological Macromolecules, 2018, 113: 1041-1051. |
45 | LIMA R B, RAZA R, QIN Haiying, et al. Direct lignin fuel cell for power generation[J]. RSC Advances. 2013, 3(15): 5083-5089. |
46 | SHEWA W A, LALMAN J A, CHAGANTI S R, et al. Electricity production from lignin photocatalytic degradation byproducts[J]. Energy, 2016, 111: 774-784. |
47 | ZHAO Xuebing, ZHU J Y. Efficient conversion of lignin to electricity using a novel direct biomass fuel cell mediated by polyoxometalates at low temperatures[J]. ChemSusChem, 2016, 9(2): 197-207. |
48 | LIU Wei, MU Wei, DENG Yulin. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J]. Angewandte Chemie, 2014, 126(49): 13776-13780. |
49 | LI Yuan, HONG Nanlong. An efficient hole transport material based on PEDOT dispersed with lignosulfonate: Preparation, characterization and performance in polymer solar cells[J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2015, 3(43): 21537-21544. |
50 | WU Ying, WANG Junyi, QIU Xueqing. Highly efficient inverted perovskite solar cells with sulfonated lignin doped PEDOT as hole extract layer[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12377-12383. |
51 | LI Yunda, LIU Tiefeng, QIU Xueqing, et al. Enhancing efficiency and durability of inverted perovskite solar cells with phenol/unsaturated carbon-carbon double bond dual-functionalized poly(3,4-ethylenedioxythiophene) hole extraction layer[J]. ACS Sustainable Chem Eng, 2019, 7(1): 961-968. |
52 | HU Huichao, XU Huimin, WU Junying, et al. Secondary bonds modifying conjugate-blocked linkages of biomass-derived lignin to form electron transfer 3D networks for efficiency exceeding 16% nonfullerene organic solar cells[J]. Advanced Functional Materials, 2020, 30: doi:10.1002/adfm.202001494. |
53 | MA Xiaojing, ELBOHY H, SIGDEL S. Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells[J]. RSC Adv, 2016, 6(14): 11481-11487. |
54 | ZHAO Ying, LIU Yun, TONG Congcong, et al. Flexible lignin-derived electrospun carbon nanofiber mats as a highly efficient and binder-free counter electrode for dye-sensitized solar cells[J]. Journal of Materials Science, 2018, 53(10): 7637-7647. |
55 | WANG Nan, FAN Hai, AI Shiyun. Lignin templated synthesis of porous carbon-CeO2 composites and their application for the photocatalytic desulphuration[J]. Chemical Engineering Journal, 2015, 260: 785-790. |
56 | Myohwa KO, PHAM L T M, Young Jin SA, et al. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell[J]. Nature Communications, 2019, 10(1): 5123-5133. |
57 | WANG Huanlei, XU Zhanwei, KOHANDEHGHAN A. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy[J]. ACS Nano, 2013, 7(6): 5131-5141. |
58 | BABEL K, JUREWICZ K, JANASIAK D. Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials[J]. Carbon, 2012, 50(14): 5017-5026. |
59 | HAO Zhiqiang, CAO Jingpei, DANG Yali, et al. Three-dimensional hierarchical porous carbon with high oxygen content derived from organic waste liquid with superior electric double layer performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4037-4046. |
60 | YANG Jingqi, WANG Yixiang, LUO Jingli, et al. Facile preparation of self-standing hierarchical porous nitrogen-doped carbon fibers for supercapacitors from plant protein-lignin electrospun fibers[J]. ACS Omega, 2018, 3(4): 4647-4656. |
61 | LIU Fangyan, WANG Zixing, ZHANG Haitao, et al. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019, 149: 105-116. |
62 | 王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729. |
WANG Shuai, GAN Linhuo, LÜ Li. Progress in preparation and application of lignin-based mesoporous carbon materials[J]. Progress in Chemical Industry, 2019, 38(8): 3720-3729. | |
63 | LI Hui, YUAN Du, TANG Chunhua, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157. |
64 | CHEN Weimin, WANG Xin, FEIZBAKHSHAN M, et al. Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 540: 524-534. |
65 | SUN Qining, KHUNSUPAT R, AKATO K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors[J]. Green Chemistry, 2016, 18: 5015-5024. |
66 | YOU Xiangyu, KODA K, YAMADA T. Preparation of electrode for electric double layer capacitor from electrospun lignin fibers[J]. Holzforschung, 2015, 69(9): 1097-1106. |
67 | YOU Xiangyu, DUAN Junlei, KODA K. Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers[J]. Holzforschung, 2016, 70(7): 661-671. |
68 | YOU Xiangyu, KODA K, YAMADA T. Preparation of high-performance internal tandem electric double-layer capacitors (IT-EDLCs) from melt-spun lignin fibers[J]. Journal of Wood Chemistry and Technology, 2016, 36(6): 418-431. |
69 | 呼延永江, 高帆. 石墨烯掺杂对木质素基碳纳米纤维电化学性能影响的研究[J]. 中国造纸学报, 2020, 35(1): 33-38. |
HUYAN Yongjiang, GAO Fan. Effect of graphene doping on the electrochemical properties of lignin-based carbon nanofibers[J]. Transactions of China Pulp and Paper, 2020, 35(1): 33-38. | |
70 | AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. |
71 | 李一举, 赵婧, 杨赛男, 等. 碳和碳基复合材料的制备及其在超级电容器中的应用[J]. 黑龙江大学自然科学学报, 2018, 35(4): 433-452. |
LI Yiju, ZHAO Jing, YANG Sainan, et al. Preparation of carbon and carbon-based composites and their applications in supercapacitors[J]. Proceedings of the Heilongjiang University, 2018, 35(4): 433-452. | |
72 | XIONG Changlun, ZHONG Wenbin, ZOU Yubo, et al. Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes[J]. Electrochimica Acta, 2016, 211: 941-949. |
73 | YI Chenqi, ZOU Jianpeng, YANG Hongzhi, et al. Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 1980-2001. |
74 | MILCZAREK G, INGANÄS O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks[J]. Science, 2012, 335(6075): 1468-1471. |
75 | XIAO Dingshu, REN Yaqi, CHEN Zhenxuan, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials[J]. Electrochimica Acta, 2019, 300: 193-201. |
76 | YOUE Won Jae, KIM Seokju, Soo Min LEE, et al. MnO2 -deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors[J]. International Journal of Biological Macromolecules, 2018, 112. |
77 | ZHOU Bingjie, WEI Liu, GONG Yutao, et al. High-performance pseudocapacitors from kraft lignin modified active carbon[J]. Electrochimica Acta, 2019, 320: doi: 10.1016/j.electacta.2019.134640. |
78 | WANG Linping, SUN Yuxiang. Preparation of iron oxide particle-decorated lignin-based carbon nanofibers as electrode material for pseudocapacitor[J]. Journal of Wood Chemistry and Technology, 2017, 37(6): 423-432. |
79 | YU Boming, GELE A, WANG L. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors[J]. International Journal of Biological Macromolecules, 2018, 118: 478-484. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[5] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[6] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[7] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[8] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[9] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[10] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[11] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[12] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[13] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[14] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[15] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||