Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3470-3477.doi: 10.19799/j.cnki.2095-4239.2022.0357
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhun NIU(), Xueyan ZHANG, Jiawei FENG, Liguo JIN, Yonghui SHI, Jiayi YU, Zichao LI, Zhijun FENG()
Received:
2022-06-27
Revised:
2022-07-14
Online:
2022-11-05
Published:
2022-11-09
Contact:
Zhijun FENG
E-mail:niuzzz0502@163.com;ysufzj@126.com
CLC Number:
Zhun NIU, Xueyan ZHANG, Jiawei FENG, Liguo JIN, Yonghui SHI, Jiayi YU, Zichao LI, Zhijun FENG. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites[J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477.
1 | JIA H P, LI X L, SONG J H, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11: 1474. |
2 | WAN M T, KANG S J, WANG L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode[J]. Nature Communications, 2020, 11: 829. |
3 | WANG B Y, WEI Y H, FANG H Y, et al. Mn-substituted tunnel-type polyantimonic acid confined in a multidimensional integrated architecture enabling superfast-charging lithium-ion battery anodes[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2020, 8(3): doi: 10.1002/advs.202002866. |
4 | PAN Q C, ZHENG F H, WU Y N, et al. MoS2-covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life[J]. Journal of Materials Chemistry A, 2018, 6(2): 592-598. |
5 | JIANG F, ZHANG L M, ZHAO W Q, et al. Microstructured sulfur-doped carbon-coated Fe7S8 composite for high-performance lithium and sodium storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11783-11794. |
6 | WANDT J, JAKES P, GRANWEHR J, et al. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries[J]. Materials Today, 2018, 21(3): 231-240. |
7 | SANTHOSHKUMAR P, NAGARAJU G, SHAJI N, et al. Hierarchical iron selenide nanoarchitecture as an advanced anode material for high-performance energy storage devices[J]. Electrochimica Acta, 2020, 356: doi:10.1016/j.electacta.2020.136833. |
8 | MENG Y, NI G, JIN X, et al. Recent advances in the application of phosphates and borates as electrocatalysts for water oxidation[J]. Materials Today Nano, 2020, 12: doi: 10.1016/j.mtnano.2020.100095. |
9 | 罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题(Ⅷ)—负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163. |
LUO F, CHU G, HUANG J, et al. Fundamental scientific aspects of lithium batteries(Ⅷ)—Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163. | |
10 | TIAN Y, WANG Z Y, FU J M, et al. FeSe2/carbon nanotube hybrid lithium-ion battery for harvesting energy from triboelectric nanogenerators[J]. Chemical Communications (Cambridge, England), 2019, 55(73): 10960-10963. |
11 | ZHAO W X, GUO C, LI C M. Lychee-like FeS2@FeSe2 core-shell microspheres anode in sodium ion batteries for large capacity and ultralong cycle life[J]. Journal of Materials Chemistry, 2017, 5: 19195-19202. |
12 | LI D, ZHOU J S, CHEN X H, et al. Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22841-22850. |
13 | 位广玲, 江颖, 周佳辉, 等. 钠离子电池金属氧/硫/硒化物负极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1318-1326. |
WEI G L, JIANG Y, ZHOU J H, et al. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326. | |
14 | ZHANG Y, ZHANG Z, ZHU Y, et al. N-doped graphene encapsulated MoS2 nanosphere composite as a high-performance anode for lithium-ion batteries[J]. Nanotechnology, 2022, 33(23): 2022Mar17;33(23). |
15 | WANG H, WANG X, LI Q, et al. Constructing three-dimensional porous carbon framework embedded with FeSe2 nanoparticles as an anode material for rechargeable batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38862-38871. |
16 | WANG J, KONG F J, CHEN J Y, et al. Metal-organic-framework-derived FeSe2@ carbon embedded into nitrogen-doped graphene sheets with binary conductive networks for rechargeable batteries[J]. ChemElectroChem, 2019, 6(10): 2805-2811. |
17 | KONG F J, LV L Z, GU Y, et al. Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries[J]. Journal of Materials Science, 2019, 54(5): 4225-4235. |
18 | BAI J, WU H M, WANG S Q, et al. Synthesis and electrochemical performances of FeSe2/C as anode material for lithium ion batteries[J]. Journal of Electronic Materials, 2019, 48(9): 5933-5940. |
19 | YE W K, WANG K, YIN W H, et al. Rodlike FeSe2-C derived from metal organic gel wrapped with reduced graphene as an anode material with excellent performance for lithium-ion batteries[J]. Electrochimica Acta, 2019, 323: doi:10.1016/j.electacta.2019.134817. |
20 | Lin H Z, Li M L, Yang X, et al. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(20): doi: 10.1002/aenm.201900323. |
21 | XIE X, MA X Y, YIN Z L, et al. Bimetallic heterojunction of CuSe/ZnSe@Nitrogen-doped carbon with modified band structures for fast sodium-ion storage[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.137366. |
22 | LIANG T, WANG H W, WANG R, et al. Nitrogen-doped carbon nanotube-buffered FeSe2 anodes for fast-charging and high-capacity lithium storage[J]. Electrochimica Acta, 2021, 389: doi: 10.1016/j.electacta.2021.138686. |
[1] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[2] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[7] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[8] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[9] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[10] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[11] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[12] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[13] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[14] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[15] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||