Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 375-384.doi: 10.19799/j.cnki.2095-4239.2020.0069
Previous Articles Next Articles
XIONG Xiaolin, YUE Jinming, ZHOU Anxing, SUO Liumin(), HU Yongsheng, LI Hong, HUANG Xuejie
Received:
2020-02-13
Revised:
2020-02-25
Online:
2020-03-05
Published:
2020-03-15
Contact:
Liumin SUO
E-mail:suoliumin@ iphy.ac.cn
CLC Number:
XIONG Xiaolin, YUE Jinming, ZHOU Anxing, SUO Liumin, HU Yongsheng, LI Hong, HUANG Xuejie. Electrochemical performance of spinel LiMn2O4 inWater-in-salt aqueouselectrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 375-384.
Fig.5
EIS of three kinds of LiMn2O4 cathodes. (a) Model for the kinetics of lithium intercalation into electrodes, (b) equivalent circuits for the model, (c) ~ (e) Fitted at-impedance response for three kinds of LiMn2O4 cathodes: (c) B-LMO, (d) A-LMO, (e) R-LMO, (f) Warburg impedances after different cycles of three kinds of LiMn2O4 cathodes"
Fig.6
Changes of the crystal structure and morphology of three kinds of LiMn2O4 cathodes: (a) XRD patterns and the partial enlarged drawing of XRD patterns of three kinds of LiMn2O4 after 300 cycles, (b) SEM images of three LiMn2O4 electrode pieces before and after 300 cycles: (b) B-LMO, (c) A-LMO, (d) R-LMO"
1 | ARMAND M , TARASCON J M . Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | YANG Z G , ZHANG J L , KINTNER-MEYER M C W , et al . Electrochemical energy storage for green grid[J]. Chem. Rev., 2011, 111(5): 3577-3613. |
3 | DOUGHTY D , ROTH E P . A general discussion of Li-ion battery safety[J]. Electrochem Soc. Interface (USA), 2012, 21(2): 29-36. |
4 | GOODENOUGH J B , KIM Y . Challenges for rechargeable Li batteries[J]. Chem. Mat., 2010, 22(3): 587-603. |
5 | 韦连梅, 燕溪溪, 张素娜, 等 . 锂离子电池低温电解液研究进展[J]. 储能科学与技术, 2017, 6(1): 69-77. |
WEI Lianmei , YAN X X , ZHANG Suna , et al . Progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2017, 6(1): 69-77. | |
6 | LI W , DAHN J R , WAINWRIGHT D S . Rechargeable lithium batteries with aqueous-electrolytes[J]. Science, 1994, 264(5162): 1115-1158. |
7 | LUO J Y , CUI W J , HE P , et al . Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nat. Chem., 2010, 2(9): 760-765. |
8 | POSADA J O G , RENNIE A J R , VILLAR S P , et al . Aqueous batteries as grid scale energy storage solutions[J]. Renew Sust. Energ. Rev., 2017, 68: 1174-1182. |
9 | WANG H B , HUANG K L , ZENG Y Q , et al . Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte[J]. Electrochim. Acta, 2007, 52(9): 3280-3285. |
10 | WANG Y G , YI J , XIA Y Y . Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840. |
11 | KOHLER J , MAKIHARA H , UEGAITO H , et al . LiV3O8: Characterization as anode material for an aqueous rechargeable Li-ion battery system[J]. Electrochim. Acta, 2000, 46(1): 59-65. |
12 | SUO L M , BORODIN O , GAO T , et al . "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
13 | 周安行, 蒋礼威, 岳金明, 等 . Water-in-salt锂离子电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 972-986. |
ZHOU Anxing , JIANG Liwei , YUE Jinming , et a . Research progress on lithium based Water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2018, 7(6): 972-986. | |
14 | WANG Y G , LUO J Y , WANG C X , et al . Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds II. Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes[J]. J. Electrochem. Soc., 2006, 153(8): A1425-A1431. |
15 | WANG Y G , LOU J Y , WU W , et al . Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds-III. Capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions[J]. J. Electrochem. Soc., 2007, 154(3): A228 |
16 | GU X , LIU J L , YANG J H , et al . First-principles study of H+ intercalation in layer-structured LiCoO2 [J]. J. Phys. Chem. C, 2011, 115(25): 12672-12676. |
17 | PRABAHARAN S R S , SAPARIL N B , MICHAEL S S , et al . Soft-chemistry synthesis of electrochemically-active spinel LiMn2O4 for Li-ion batteries[J]. Solid State Ionics, 1998, 112(1-2): 25-34. |
18 | MIURA K , YAMADA A , TANAKA M . Electric states of spinel Li x Mn2O4 as a cathode of the rechargeable battery[J]. Electrochim. Acta, 1996, 41(2): 249-256. |
19 | THACKERAY M M . Manganese oxides for lithium batteries[J]. Prog. Solid State Chem., 1997, 25(1/2): 1-71. |
20 | THACKERAY M M , SHAO-HORN Y , KAHAIAN A J , et al . Structural fatigue in spinel electrodes in high voltage (4V) Li/Li x Mn2O4 cells[J]. Electrochem. Solid State Lett., 1998, 1(1): 7-9. |
21 | XIA Y Y , ZHOU Y H , YOSHIO M . Capacity fading on cycling of 4 V Li/LiMn2O4 cells[J]. J. Electrochem. Soc., 1997, 144(8): 2593-2600. |
22 | AMATUCCI G , TARASCON J M . Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries[J]. J. Electrochem Soc., 2002, 149(12): K31-K46. |
23 | BLYR A , SIGALA C , AMATUCCI G , et al . Self-discharge of LiMn2O4/C Li-ion cells in their discharged state—Understanding by means of three-electrode measurements[J]. J. Electrochem. Soc., 1998, 145(1): 194-209. |
24 | CHO J, THACKERAY M M . Structural changes of LiMn2O4 spinel electrodes during electrochemical cycling[J]. J. Electrochem. Soc., 1999, 146(10): 3577-3581. |
25 | JANG D H , SHIN Y J , OH S M . Dissolution of spinel oxides and capacity losses in 4V Li/Li x Mn2O4 coils[J]. J. Electrochem. Soc., 1996, 143(7): 2204-2211. |
26 | THACKERAY M M , JOHNSON P J , DEPICCIOTTO L A , et al . Electrochemical extraction of lithium from LiMn2O4 [J]. Materials Research Bulletin, 1984, 19(2): 179-187. |
27 | AMATUCCI G G , PEREIRA N , ZHENG T , et al . Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAl x Mn2- x O4- z F z solid solution[J]. J. Electrochem Soc., 2001, 148(2): A171-A182. |
28 | MYUNG S T , KOMABA S , KUMAGAI N . Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the emulsion drying method[J]. J. Electrochem. Soc., 2001, 148(5): A482-A489. |
29 | TAKADA T , HAYAKAWA H , ENOKI H , et al . Structure and electrochemical characterization of Li1+ x Mn2- x O4 spinels for rechargeable lithium batteries[J]. Journal of Power Sources, 1999, 81: 505-509. |
30 | THACKERAY M M , DAVID W I F , BRUCE P G , et al . lithium insertion into manganese spinels[J]. Materials Research Bulletin, 1983, 18(4): 461-72. |
31 | OHZUKU T , KITAGAWA M , HIRAI T . Electrochemistry of manganese-dioxide in lithium nonaqueous cell .2. X-ray diffractional and electrochemical characterization on deep discharge products of electrolytic manganese-dioxide[J]. J. Electrochem. Soc., 1990, 137(1): 40-46. |
32 | THOMAS M G S R , BRUCE P G , GOODENOUGH J B . AC impedance analysis of polycrystalline insertion electrodes: Application to Li1- x CoO2 [J]. the Electrochemical Society, 1985, 132(7): 1521-1528. |
33 | BARSOUKOV E , KIM J H , KIM J H , et al . Kinetics of lithium intercalation into carbon anodes: In situ impedance investigation of thickness and potential dependence[J]. Solid State Ionics, 1999, 116(3): 249-61. |
34 | 许洁茹, 凌仕刚, 王少飞, 等 .锂电池研究中的电导率测试分析方法[J]. 储能科学与技术, 2018, 7(5): 926-955. |
XU Jieru , LING Shigang , WANG Shaofei , et al . Conductivity test and analysis methods for research of lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 926-955. |
[1] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[2] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[3] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[4] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[5] | Chunyan YANG, Yunlong MA, Xiaoqiong FENG, Shiying ZHANG, Changsheng AN, Jingfeng LI. Research progress of carbon-based materials in aluminum-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 432-439. |
[6] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[7] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[8] | Jixian WANG, Sikan PENG, Wenzheng NAN, Xiang CHEN, Chen WANG, Shaojiu YAN, Shenglong DAI. Preparation of graphene-coated Li1.22Mn0.52Ni0.26O2 using a spray drying method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 111-117. |
[9] | Jiajing ZHU, Yun GAO. Research progress of water-in-salt electrolytes [J]. Energy Storage Science and Technology, 2020, 9(S1): 13-22. |
[10] | Caiwen WU, Lijing HUANG, Chunyang ZOU, Bowen LI, Wenjuan WU. Research progress of the lignin in application energy storage [J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746. |
[11] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[12] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[13] | REN Ya, WANG Ying, XU Zhiyu, YAN Xiao, HUANG Bixiong. Graphite modified LiNi1/3Co1/3Mn1/3O2 cathodes with improved performance for lithium-ion battery [J]. Energy Storage Science and Technology, 2019, 8(5): 935-940. |
[14] | XU Hui, YANG Liuqing, YIN Fan, YANG Gang. Preparation and electrochemical performance of amorphous carbon coated tin-based anode materials [J]. Energy Storage Science and Technology, 2019, 8(4): 732-737. |
[15] | XIA Zhimei, CHEN Hao, XIAO Li, LIU Pengcheng. Preparation and electrochemical performance of a type 622 ternary cathode materials [J]. Energy Storage Science and Technology, 2018, 7(5): 921-925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||