Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1490-1499.doi: 10.19799/j.cnki.2095-4239.2023.0197
• Special Issue on Key Materials and Recycling Technologies for Energy Storage Batteries • Previous Articles Next Articles
Yongli YI1(), Ran YU2(), Wu LI1, Yi JIN2, Zheren DAI3
Received:
2023-03-31
Revised:
2023-04-30
Online:
2023-05-05
Published:
2023-05-29
Contact:
Ran YU
E-mail:yiyongli8@qq.com;yr0306@qq.com
CLC Number:
Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys[J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499.
1 | BRESSER D, PASSERINI S, SCROSATI B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries—A review[J]. Chemical Communications (Cambridge, England), 2013, 49(90): 10545-10562. |
2 | SUBRAMANIAN K, ALEXANDER G V, KARTHIK K, et al. A brief review of recent advances in garnet structured solid electrolyte based lithium metal batteries[J]. Journal of Energy Storage, 2021, 33: 102157. |
3 | PAN P, ZHANG M M, CHENG Z L, et al. Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable All-Solid-State lithium metal batteries[J]. Energy Storage Materials, 2022, 47: 279-287. |
4 | WANG C H, YANG Y F, LIU X J, et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13694-13702. |
5 | CHEN S J, NIE Z W, TIAN F F, et al. The influence of surface chemistry on critical current density for garnet electrolyte[J]. Advanced Functional Materials, 2022, 32(23): 2113318. |
6 | AFYON S, KRUMEICH F, RUPP J L M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries[J]. Journal of Materials Chemistry A, 2015, 3(36): 18636-18648. |
7 | ZHANG L, ZHUANG Q C, ZHENG R G, et al. Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density[J]. Energy Storage Materials, 2022, 49: 299-338. |
8 | LI Z, FU J L, ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Advanced Science, 2023, https://doi.org/10.1002/advs.202201718. |
9 | XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
10 | WAN J Y, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. |
11 | ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785. |
12 | ZHANG W Q, NIE J H, LI F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419. |
13 | MA X N, XU Y L. Efficient anion fluoride-doping strategy to enhance the performance in garnet-type solid electrolyte Li7La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 2939-2948. |
14 | KIM A, KANG J H, SONG K, et al. Simultaneously improved cubic phase stability and Li-ion conductivity in garnet-type solid electrolytes enabled by controlling the Al occupation sites[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12331-12339. |
15 | WANG Y, WU Y J, WANG Z X, et al. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity[J]. Journal of Materials Chemistry A, 2022, 10(9): 4517-4532. |
16 | RETTENWANDER D, WELZL A, CHENG L, et al. Synthesis, crystal chemistry, and electrochemical properties of Li7-2 xLa3Zr2- xMoxO12(x=0.1-0.4): Stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+[J]. Inorganic Chemistry, 2015, 54(21): 10440-10449. |
17 | HAILU MENGESHA T, LEMMA BESHAHWURED S, WU Y S, et al. A polydopamine-modified garnet-based polymer-in-ceramic hybrid solid electrolyte membrane for high-safety lithium metal batteries[J]. Chemical Engineering Journal, 2023, 452: 139340. |
18 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176-184. |
19 | LI Z, HUANG H-M, ZHU J-K, et al. Ionic Conduction in Composite Polymer Electrolytes: Case of PEO: Ga-LLZO Composites[J]. ACS Appl. Mater. Interfaces, 2019, 11(1): 784-791. |
20 | WANG X, ZHAI H W, QIE B Y, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60: 205-212. |
21 | ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. |
22 | WAN Z P, LEI D N, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301. |
23 | HUO H Y, CHEN Y, LUO J, et al. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries[J]. Advanced Energy Materials, 2019, 9(17): 1804004. |
24 | ZHANG J J, ZANG X, WEN H J, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5(10): 4940-4948. |
25 | ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. |
26 | ZHENG J, TANG M X, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40): 12538-12542. |
27 | JIANG T L, HE P G, WANG G X, et al. Lithium batteries: Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(12): 2070052. |
[1] | Lei LEI, Peng GAO, Nana FENG, Kunpeng CAI, Hai ZHANG, Yang ZHANG. The influences of multifactors in the synthesis progress on the characteristics of lithium lanthanum zirconate solid electrolytes [J]. Energy Storage Science and Technology, 2023, 12(5): 1625-1635. |
[2] | Wenzhe HAN, Qingsong LAI, Xuanwen GAO, Wenbin LUO. Advances toward manganese-based layered oxide cathodes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1364-1379. |
[3] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[4] | Liang WANG, Xin LIU, Changan WANG, Shengnian TIE. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material [J]. Energy Storage Science and Technology, 2023, 12(1): 79-85. |
[5] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[6] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[7] | Ziying CHEN, Xiang DING, Qingsong TONG, Junyan LI, Jingyu HUANG. Application progress of doping technology in Mn-based lithium rich oxide cathode materials [J]. Energy Storage Science and Technology, 2022, 11(8): 2681-2690. |
[8] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[9] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[10] | Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN. Research progress in LiFePO4 cathode material modification [J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. |
[11] | Linsen ZHANG, Shiqi WANG, Lixia WANG, Yanhua SONG. Synthesis and performances of Li+ modified g-C3N4 for PEO-based composite solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(11): 3463-3469. |
[12] | Al-jawfi IBRAHIM, Jiaqi ZHAO, Meng SHI, Xiaohong KANG. High electrochemical stability of Al-doped spinel LiMn2O4 cathode material for aqueous lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1330-1337. |
[13] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[14] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[15] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||