Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (5): 1469-1479.doi: 10.19799/j.cnki.2095-4239.2023.0176
• Special Issue on Key Materials and Recycling Technologies for Energy Storage Batteries • Previous Articles Next Articles
Junpeng GUO1(), Qi SUN2, Yuefang CHEN1, Yuwen ZHAO1, Huan YANG1, Zhijia ZHANG1()
Received:
2023-03-27
Revised:
2023-04-07
Online:
2023-05-05
Published:
2023-05-29
Contact:
Zhijia ZHANG
E-mail:2131020386@tiangong.edu.cn;zhangzhijia@tiangong.edu.cn
CLC Number:
Junpeng GUO, Qi SUN, Yuefang CHEN, Yuwen ZHAO, Huan YANG, Zhijia ZHANG. Preparation of three-dimensional multistage iron oxide/carbon nanofiber integrated electrode and sodium storage performance[J]. Energy Storage Science and Technology, 2023, 12(5): 1469-1479.
Table 1
Performance of iron oxide/carbon based composite electrodes reported in the literature"
序号 | 电极材料 | 测试电流密度/(A/g) | 质量比容量/(mAh/g) | 参考文献 |
---|---|---|---|---|
1 | Fe2O3@C | 0.2 | 203 | [ |
2 | FeO x /CNF | 0.5 | 277 | [ |
3 | R-Fe3O4@C | 0.1 | 365.1 | [ |
4 | Fe3O4@CNT | 0.1 | 377 | [ |
5 | MFe2O3@N-HCNs | 0.1 | 417 | [ |
6 | Fe2O3@GNS | 0.1 | 440 | [ |
7 | HCM-Fe3O4@void@N-C | 0.16 | 545 | [ |
8 | Fe3O4@C | 0.1 | 657 | [ |
9 | 5-Fe2O3@C | 0.2 | 740 | [ |
10 | Fe2O3@N-PCNFs | 0.2 | 806 | [ |
1 | PEI Z Z, LI Z G, ZHENG X L. Porous materials for lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9028-9049. |
2 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. |
3 | KULOVA T L, SKUNDIN A M. From lithium-ion to sodium-ion battery[J]. Russian Chemical Bulletin, 2017, 66(8): 1329-1335. |
4 | ZONG L S, YAN L, ZHANG Z J, et al. Bundled carbon nanofiber arrays grown on Cu-Ni tube textile boosting superior sodium-ion storage kinetics[J]. Journal of Alloys and Compounds, 2023, 938: 168448. |
5 | ZHANG Z J, SUN K, CHEN Y F, et al. High conductivity Cu3Ge and high-capacity GeO2 synergistically enhance a continuous channel Ge-based anode for lithium-ion batteries with long-life and scalable preparation[J]. Energy & Fuels, 2022, 36(21): 13390-13397. |
6 | JIANG Y Z, HU M J, ZHANG D, et al. Transition metal oxides for high performance sodium ion battery anodes[J]. Nano Energy, 2014, 5: 60-66. |
7 | YU H J, GUO S H, ZHU Y B, et al. Novel titanium-based O3- type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries[J]. Chemical Communications, 2014, 50(4): 457-459. |
8 | ZHAO Q L, WHITTAKER A, ZHAO X. Polymer electrode materials for sodium-ion batteries[J]. Materials, 2018, 11(12): 2567. |
9 | YAN L, ZONG L S, ZHANG Z J, et al. Oxygen vacancies activated porous MnO/graphene submicron needle arrays for high-capacity lithium-ion batteries[J]. Carbon, 2022, 190: 402-411. |
10 | LI C Q, ZHANG Z J, CHEN Y F, et al. Architecting braided porous carbon fibers based on high-density catalytic crystal planes to achieve highly reversible sodium-ion storage[J]. Advanced Science, 2022, 9(18): 2104780. |
11 | 成雪莉, 张维福, 罗城, 等. 一步水热法制备三维石墨烯/Fe3O4复合材料及其储锂性能研究[J]. 储能科学与技术, 2023, 12 (4): 1066-1074. |
CHENG X L, ZHANG W F, LUO C C, et al. The preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their Lithium storage performance[J]. Energy Storage Science and Technology, 2023, 12 (4): 1066-1074. | |
12 | MARAWAT F, ALI G, SADAQAT A, et al. Cobalt doped ovoid magnetite (Fe3O4) nanocomposites incrusted on sheets of reduced graphene oxide as anode for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 929: 167318. |
13 | 任增英. 多孔镍膜-CNTs复合电极的制备与性能研究[D]. 天津: 天津工业大学. |
REN Z Y. Preparation and properties of porous nickel film-CNTs composite electrode[D]. Tianjin: Tianjin Polytechnic University. | |
14 | 张志佳, 李传齐. 自支撑碳纳米纤维的宏量制备及其储钠性能[J]. 天津工业大学学报, 2022, 41(6): 23-28 |
ZHANG Z J, LI C Q. Mass-preparation and sodium storage performance of self-supporting carbon nanofibers[J]. Journal of Tianjin Polytechnic University, 2022, 41(6): 23-28. | |
15 | BAJWA N, LI X S, AJAYAN P M, et al. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 6054-6064. |
16 | LIN R P, XU Y S, XIAO M J, et al. In-situ pyrolysis preparation of Fe3O4@CNTs/CC as binder-free anode for sodium-ion batteries[J]. Materials Chemistry and Physics, 2023, 297: 127403. |
17 | REN G Z, CHEN C J, DENG L H, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials, 2015, 30(5): 476-480. |
18 | 龚晓晔, 尤静林, 王建, 等. 几种铁(氧)化合物的高温原位拉曼光谱研究[C]//第二十届全国光散射学术会议, 2019, 苏州. |
GONG X Y, YOU J L, WANG J, et al. High-temperature in situ Raman spectroscopy of several iron (oxygen) compounds[C]//CNCLS 20, Suzhou, China, 2019. | |
19 | LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): 1903795. |
20 | LI L, WANG Q M, ZHANG X Y, et al. Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries[J]. Applied Surface Science, 2020, 508: 145295. |
21 | WANG X J, LIU X J, WANG G, et al. One-dimensional hybrid nanocomposite of high-density monodispersed Fe3O4 nanoparticles and carbon nanotubes for high-capacity storage of lithium and sodium[J]. Journal of Materials Chemistry A, 2016, 4(47): 18532-18542. |
22 | FAN H H, QIN B W, WANG Z W, et al. Pseudocapacitive sodium storage of Fe1- xS@N-doped carbon for low-temperature operation[J]. Science China Materials, 2020, 63(4): 505-515. |
23 | 姜亚龙. 赝电容储钠纳米材料的设计制备与电化学机理[D]. 武汉: 武汉理工大学. |
JIANG Y L. Design, preparation and electrochemical mechanism of pseudo-capacitance sodium storage nano-materials[D]. Wuhan: Wuhan University of Technology. | |
24 | ZHU J, DENG D. Single-crystalline α-Fe2O3 void@frame microframes for rechargeable batteries[J]. Journal of Materials Chemistry A, 2016, 4(12): 4425-4432. |
25 | YU S J, LU Z J, XIE J, et al. Carbon-coated Fe3O4 nanoparticles in situ grown on 3D cross-linked carbon nanosheets as anodic materials for high capacity lithium and sodium-ion batteries[J]. New Journal of Chemistry, 2022, 46(21): 10229-10236. |
26 | XU Z L, YAO S S, CUI J, et al. Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries[J]. Energy Storage Materials, 2017, 8: 10-19. |
27 | YU M, SUN L Y, NING X H. Controllable synthesis of carbon-coated Fe3O4 nanorings with high Li/Na storage performance[J]. Journal of Alloys and Compounds, 2021, 878: 160359. |
28 | CHEN M W, NIU D C, MAO J Y, et al. A movable Fe2O3 core in connected hierarchical pores for ultrafast intercalation/deintercalation in sodium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(6): 5888-5896. |
29 | LI D, ZHOU J S, CHEN X H, et al. Amorphous Fe2O3/graphene composite nanosheets with enhanced electrochemical performance for sodium-ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30899-30907. |
30 | ZHAO Y J, WANG F X, WANG C, et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries[J]. Nano Energy, 2019, 56: 426-433. |
31 | ZHOU Y P, SUN W P, RUI X H, et al. Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage[J]. Nano Energy, 2016, 21: 71-79. |
32 | ZHANG N, HAN X P, LIU Y C, et al. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2015, 5(5): 1401123. |
33 | XIA G L, GAO Q L, SUN D L, et al. Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes[J]. Small, 2017, 13(44): 1701561. |
34 | CHOI W, SHIN H C, KIM J M, et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries[J]. Journal of Electrochemical Science and Technology, 2020, 11(1): 1-13. |
[1] | Xueli CHENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Preparation of three-dimensional graphene/Fe3O4 composites by one-step hydrothermal method and their lithium storage performance [J]. Energy Storage Science and Technology, 2023, 12(4): 1066-1074. |
[2] | Panlei CAO, Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Fe3+ crosslinking reduced graphene oxides free-standing film by pre-encapsulated Fe3O4 nanospheres for lithium storage [J]. Energy Storage Science and Technology, 2023, 12(3): 710-720. |
[3] | LI Chen, XIONG Chuanxi. The preparation of Fe3O4/nanocellulose aerogel nanocomposite as anodes for lithium-ion batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2018, 7(3): 512-518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||