Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 710-720.doi: 10.19799/j.cnki.2095-4239.2022.0644
• Energy Storage Materials and Devices • Previous Articles Next Articles
Panlei CAO(), Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN()
Received:
2022-11-02
Revised:
2022-12-26
Online:
2023-03-05
Published:
2023-04-14
Contact:
Xiaoya YUAN
E-mail:975943920@qq.com;yuanxy@cqjtu.edu.cn
CLC Number:
Panlei CAO, Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Fe3+ crosslinking reduced graphene oxides free-standing film by pre-encapsulated Fe3O4 nanospheres for lithium storage[J]. Energy Storage Science and Technology, 2023, 12(3): 710-720.
Fig. 9
(a) The cyclic voltammetric curve of the Fe3+@Fe3O4/rGO free-standing film; (b) Circular voltammeity curve of the Fe3O4 free-standing film; (c) Circulating performance diagram of rGO, Fe3O4, Fe3O4/rGO, and Fe3+@Fe3O4/rGO free-standing films circulating at a current density of 100 mA/g and coulombic efficiency diagram of Fe3+@Fe3O4/rGO free-standing film; (d) Charge and discharge curve of the 1,2,10,20,100 laps of the Fe3+@Fe3O4/rGO free-standing film in the case of a current density of 100 mA/g; (e) Rate performance of Fe3O4 、Fe3O4/rGO and Fe3+@Fe3O4/rGO free-standing films in different ratio cycles; (f) Impedance diagram of the rGO, Fe3O4, Fe3O4/rGO, and Fe3+@Fe3O4/rGO free-standing films"
1 | 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014, 16020. |
WANG Y K. Colloid electrostatic self-assembly synthesis of ferroferric oxide/reduced graphene oxide nanocomposites for lithium storage[J]. Materials Reports, 2021, 35(16): 16008-16014, 16020. | |
2 | 焦丹花, 宋群, 蔡晓东. 氧化石墨烯在锂离子电池负极材料中的研究进展[J]. 广州化工, 2021, 49(14): 7-10. |
JIAO D H, SONG Q, CAI X D. Research progress on graphene oxide as anode materials for lithium ion batteries[J]. Guangzhou Chemical Industry, 2021, 49(14): 7-10. | |
3 | 李培. 石墨烯/四氧化三铁复合材料的制备及在锂离子电池中的应用研究[D]. 天津: 天津大学, 2014. |
LI P. The preparation of graphene/Fe3O4 composites and its application in anode materials for lithium ion batteries[D]. Tianjin: Tianjin University, 2014. | |
4 | 徐飞. 锂离子电池四氧化三铁负极材料的改性与研究[D]. 成都: 电子科技大学, 2020. |
XU F. Modification and research of Fe3O4 anode materials for lithium ion batteries[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
5 | HONG R Y, LI J H, ZHANG S Z, et al. Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids[J]. Applied Surface Science, 2009, 255(6): 3485-3492. |
6 | 郭伟华, 黄德娟, 马建国, 等. NH2-Fe3O4纳米粒子修饰电极测定水样中的微量铅和铜[J]. 分子科学学报, 2016, 32(6): 481-487. |
GUO W H, HUANG D J, MA J G, et al. Determination of trace lead and copper in water sample with NH2-Fe3O4 modified electrode[J]. Journal of Molecular Science, 2016, 32(6): 481-487. | |
7 | WEI W, YANG S B, ZHOU H X, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(21): 2909-2914. |
8 | 李杨, 江连洲, 李丹丹, 等. 氨基硅烷修饰的磁性纳米粒子固定化碱性蛋白酶[J]. 食品科学, 2012, 33(9): 202-205. |
LI Y, JIANG L Z, LI D D, et al. Immobilization of alkaline protease with magnetic nanoparticles modified by amino-silane[J]. Food Science, 2012, 33(9): 202-205. | |
9 | LEE B, MA Z, ZHANG Z T, et al. Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts[J]. Microporous and Mesoporous Materials, 2009, 122(1/2/3): 160-167. |
10 | YANG S B, FENG X L, IVANOVICI S, et al. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage[J]. Angewandte Chemie, 2010, 49(45): 8408-8411. |
11 | ZHAO J P, YANG B J, ZHENG Z M, et al. Facile preparation of one-dimensional wrapping structure: Graphene nanoscroll-wrapped of Fe3O4 nanoparticles and its application for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9890-9896. |
12 | 王金星. 自支撑石墨烯基膜材料的制备及其电化学性能的研究[D]. 西安: 西北大学, 2016. |
WANG J X. Synthesis and electrochemical properties of free-standing graphene-based film materials[D]. Xi'an: Northwest University, 2016. | |
13 | GONISZEWSKI S, GALLOP J, ADABI M, et al. Self-supporting graphene films and their applications[J]. IET Circuits, Devices & Systems, 2015, 9(6): 420-427. |
14 | 杨俊松, 张晖, 王腾, 等. 水热体系中四氧化三铁与氧化石墨烯复合纳米颗粒的合成[J]. 硅酸盐通报, 2013, 32(1): 100-102. |
YANG J S, ZHANG H, WANG T, et al. Synthesis of Fe3O4/graphene oxide composite nanoparticles in hydrothermal system[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(1): 100-102. | |
15 | DENG H, LI X L, PENG Q, et al. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angewandte Chemie, 2005, 44(18): 2782-2785. |
16 | 张石磊. 四氧化三铁复合碳纳米材料制备及其锂空气电池性能研究[D]. 重庆: 重庆大学, 2018. |
ZHANG S L. Fe3O4-carbon nanomaterials compounds preparation and their properties as cathode for lithium air battery[D]. Chongqing: Chongqing University, 2018. | |
17 | BEKETOV I V, SAFRONOV A P, MEDVEDEV A I, et al. Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids[J]. AIP Advances, 2012, 2(2): 022154. |
18 | PARK S, LEE K S, BOZOKLU G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578. |
19 | HUANG L, ZHANG M, LI C, et al. Graphene-based membranes for molecular separation[J]. The Journal of Physical Chemistry Letters, 2015, 6(14): 2806-2815. |
20 | WAN S J, CHEN Y, FANG S L, et al. High-strength scalable graphene sheets by freezing stretch-induced alignment[J]. Nature Materials, 2021, 20(5): 624-631. |
21 | WAN S J, FANG S L, JIANG L, et al. Strong, conductive, foldable graphene sheets by sequential ionic and π bridging[J]. Advanced Materials, 2018: doi: 10.1002/adma.201802733. |
22 | ZHOU G M, WANG D W, LI F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(18): 5306-5313. |
23 | SU J, CAO M H, REN L, et al. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism properties[J]. The Journal of Physical Chemistry C, 2011, 115(30): 14469-14477. |
24 | ZHAO X J, JIA Y H, LIU Z H. GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 536: 463-473. |
25 | GUPTA P, GARKOTI C, SHABIR J, et al. Amine grafted Fe3O4 immobilized graphene oxide as a recyclable and effectual nanocomposite for the regioselective ring opening reaction[J]. Research on Chemical Intermediates, 2021, 47(10): 4013-4028. |
26 | NAZARI Y, SALEM S. Efficient photocatalytic methylene blue degradation by Fe3O4@TiO2 core/shell linked to graphene by aminopropyltrimethoxysilane[J]. Environmental Science and Pollution Research, 2019, 26(24): 25359-25371. |
27 | LIU T, YANG B, GRAHAM N, et al. Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment[J]. Journal of Membrane Science, 2017, 542: 31-40. |
28 | LI B J, CAO H Q, SHAO J, et al. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices[J]. Journal of Materials Chemistry, 2011, 21(13): 5069-5075. |
29 | LI J, WANG Y C, ZHOU T, et al. Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015, 137(45): 14305-14312. |
30 | 徐怀良. 四氧化三铁/还原氧化石墨烯复合材料的制备及其微波吸收性能和锂电性能研究[D]. 合肥: 安徽大学, 2012. |
XU H L. Preparation, microwave absorption and lithium ion batteries performance of Fe3O4/r-GO composites[D]. Hefei: Anhui University, 2012. | |
31 | ZHOU G M, LI L, MA C Q, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11: 356-365. |
32 | YANG S B, FENG X L, WANG X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie, 2011, 50(23): 5339-5343. |
[1] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[2] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[3] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[4] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[5] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[6] | Lanfang ZHU, Bing LIU. Influence of graphene surface distance and carbon nanotube diameter on capacitance of a double layer capacitor [J]. Energy Storage Science and Technology, 2020, 9(6): 1720-1728. |
[7] | Min LI, Jiayuan XIANG, Donghui YANG, Yuping WANG, Dong CHEN, Jian CHEN, Jiangping TU. Effect of carbon-coated Al foil on properties of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1714-1719. |
[8] | LIU Tengyu, ZHANG Xiong, AN Yabin, LI Chen, MA Yanwei. Research progress on the application of graphene for lithium-ion capacitors [J]. Energy Storage Science and Technology, 2020, 9(4): 1030-1043. |
[9] | LI Xiaohui, CHEN Beihai, CHEN Ganjie, ZHANG Yuewei, WANG Jing, GU Lingxian. Preparation of high-rate double-layer carbon-coated silicon matrix composite [J]. Energy Storage Science and Technology, 2020, 9(4): 1052-1059. |
[10] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[11] | GUAN Yibiao, SHEN Jinran, LI Kangle, GUAN Zhaoruxin, ZHOU Shuqin, GUO Cuijing, XU Bin. Application of graphene conductive additives in cathodes of lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 70-81. |
[12] | WU Shijia, XIAO Xiang, WANG Chao, ZHONG Guobin, LI Xin, ZHENG Chao, RUAN Dianbo. Effect of high temperature heat treatment on electrochemical properties of three-dimensional porous graphene [J]. Energy Storage Science and Technology, 2020, 9(1): 65-69. |
[13] | SHEN Jinran, GUO Cuijing, CHEN He, ZHOU Shuqin, XU Bin, GUAN Yibiao. Synthesis and lithium storage property of high-performance N-doped reduced graphene oxide [J]. Energy Storage Science and Technology, 2019, 8(6): 1137-1144. |
[14] | LI Wei, HOU Zhaoxia, LI Jianjun, BO Daming. Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors [J]. Energy Storage Science and Technology, 2019, 8(2): 248-259. |
[15] | LI Chen, XIONG Chuanxi. The preparation of Fe3O4/nanocellulose aerogel nanocomposite as anodes for lithium-ion batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2018, 7(3): 512-518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||