Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2559-2569.doi: 10.19799/j.cnki.2095-4239.2024.0150
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yinan HE(), Kai ZHANG(), Junwu ZHOU, Xinyang WANG, Bailin ZHENG
Received:
2024-02-27
Revised:
2024-04-10
Online:
2024-08-28
Published:
2024-08-15
Contact:
Kai ZHANG
E-mail:ehqu22730306@163.com;zhangkai@tongji.edu.cn
CLC Number:
Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569.
Table 1
Charging and discharging pressurization equipment pressurization parameters"
参数Parameter | 数值/方式 Value/Method |
---|---|
驱动方式Driving method | 交流步进电机驱动AC stepper motor drive |
力值范围Force range | 1~1000 N |
测力精度Force measurement accuracy | ±1% |
单位转换Unit conversion | kg, N, lb |
挤压行程Squeeze length | 1~200 mm |
力值显示Force value display | PLC触摸屏显示 PLC touch screen display |
电池挤压头Battery extrusion head | 标准挤压头,面积>20 cm2 Standard extrusion head, area>20 cm2 |
挤压程度Squeezing degree | 挤压载荷达到预定载荷值后,保持该载荷直到充电/放电行为完成时结束 After the compression load reaches the predetermined load value, maintain the load until the charging/discharging behavior is completed. |
箱体材质Cabinet’s material | 外箱冷轧钢板喷塑处理Spraying treatment of cold-rolled steel plate for outer box |
测试空间Test space | 直径100 mm压盘Pressure plate with a diameter of 100 mm |
外形尺寸External dimensions | 约1000 mm×800 mm×650 mm(长×宽×高) Approximately 1000×800×650 mm3 (length×width×height) |
设备重量Equipment weight | 约220 kg Approximately 220 kg |
电源需求Power demand | AC220 V, 50 Hz |
Table 2
Charging and discharging pressurization experimental matrix"
组号 Group number | 充放电电流 Charging and discharging current | 组别 Group | 充电载荷 Charging load | 放电载荷 Discharging Load | 分类 classification |
---|---|---|---|---|---|
1 | 0.2C | 对照组 control group | 0.0 MPa | 恒定压力实验组 Constant pressure experimental group | |
2 | 实验组 experimental group | 0.1 MPa | |||
3 | 0.2 MPa | ||||
4 | 0.3 MPa | ||||
5 | 0.4 MPa | ||||
6 | 0.1 MPa | 0.2 MPa | 变压力实验组 Variable pressure experimental group | ||
7 | 0.2 MPa | 0.1 MPa |
1 | LIU H K, GUO Z P, WANG J Z, et al. Si-based anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(45): 10055-10057. DOI: 10.1039/C0JM01702G. |
2 | CHEN Y Q, LUO Y, ZHANG H Z, et al. The challenge of lithium metal anodes for practical applications[J]. Small Methods, 2019, 3(7): 1800551. DOI: 10.1002/smtd.201800551. |
3 | XU J Q, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527. DOI: 10.1016/j.jpowsour.2007.11.074. |
4 | YANG J, ZHOU X Y, LI J, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics, 2012, 135(2/3): 445-450. DOI: 10.1016/j.matchemphys.2012.05.006. |
5 | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. DOI: 10.19799/j.cnki.2095-4239.2020.0012. |
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. DOI: 10.19799/j.cnki.2095-4239.2020.0012. | |
6 | JI L W, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699. DOI: 10.1039/C0EE00699H. |
7 | 肖钰, 梁晓杜, 廖丽霞, 等. 锂离子电池硅负极材料性能改进的研究进展[J]. 化工新型材料, 2020, 48(4): 1-4. DOI: 10.19817/j.cnki.issn1006-3536.2020.04.001. |
XIAO Y, LIANG X D, LIAO L X, et al. Research progress on improvement of silicon cathode material for lithium ion battery[J]. New Chemical Materials, 2020, 48(4): 1-4. DOI: 10.19817/j.cnki.issn1006-3536.2020.04.001. | |
8 | MCDOWELL M T, RYU I, LEE S W, et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy[J]. Advanced Materials, 2012, 24(45): 6034-6041. DOI: 10.1002/adma.201202744. |
9 | 余向南, 马天翼, 李慧玉, 等. 硅-改性多壁纳米碳管柔性复合电极的制备和性能研究[J]. 储能科学与技术, 2018, 7(3): 450-458. DOI: 10.12028/j.issn.2095-4239.2018.0047. |
YU X N, MA T Y, LI H Y, et al. Preparation and properties of Si-PDCNT flexible composite anode[J]. Energy Storage Science and Technology, 2018, 7(3): 450-458. DOI: 10.12028/j.issn.2095-4239.2018.0047. | |
10 | 郝胐, 王俊明, 董春伟, 等. 中空三维结构的硅碳负极的构筑及性能研究[J]. 储能科学与技术, 2024, 13(1): 325-332. DOI: 10.19799/j.cnki.2095-4239.2023.0746. |
HAO F, WANG J M, DONG C W, et al. Preparation and research of three-dimensional silicon carbon anodes with a hollow structure[J]. Energy Storage Science and Technology, 2024, 13(1): 325-332. DOI: 10.19799/j.cnki.2095-4239.2023.0746. | |
11 | SETHURAMAN V A, NGUYEN A, CHON M J, et al. Stress evolution in composite silicon electrodes during lithiation/delithiation[J]. Journal of the Electrochemical Society, 2013, 160(4): A739-A746. DOI: 10.1149/2.021306jes. |
12 | MUSSA A S, KLETT M, LINDBERGH G, et al. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells[J]. Journal of Power Sources, 2018, 385: 18-26. DOI: 10.1016/j.jpowsour.2018.03.020. |
13 | CUI J, CHEN X, ZHOU Z, et al. Effect of continuous pressures on electrochemical performance of Si anodes[J]. Materials Today Energy, 2021, 20: 100632. DOI: 10.1016/j.mtener.2020.100632. |
14 | ZHANG K, ZHANG Y W, ZHOU J W, et al. A stress-based charging protocol for silicon anode in lithium-ion battery: Theoretical and experimental studies [J]. Journal of Energy Storage, 2020, 32: 101765. DOI: 10.1016/j.est.2020.101765. |
15 | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. DOI: 10.1016/j.nantod.2012.08.004. |
16 | MCDOWELL M T, LEE S W, NIX W D, et al. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries[J]. Advanced Materials, 2013, 25(36): 4966-4985. DOI: 10.1002/adma.201301795. |
17 | ZHANG K, ZHOU J W, TIAN T, et al. Cycling-induced damage of silicon-based lithium-ion batteries: Modeling and experimental validation[J]. International Journal of Fatigue, 2023, 172: 107660. DOI: 10.1016/j.ijfatigue.2023.107660. |
[1] | Kaiyue YANG, Xinbing XIE, Xiaozhong DU. Exploration of lithium battery electrode calendering process based on discrete element method [J]. Energy Storage Science and Technology, 2024, 13(8): 2570-2579. |
[2] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[3] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[4] | Yuhao WANG, Zhiyong LI, Xin GUO. Applications and challenges of polymer-based electrolytes in low-temperature solid-state lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2243-2258. |
[5] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[6] | Baoquan LIU, Xiaoyu CAO. Accurate typical gas detection of lithium battery in early thermal runaway period [J]. Energy Storage Science and Technology, 2024, 13(6): 1995-2009. |
[7] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[8] | Wei XIAO, Xiaowen WU, Jingling SUN, Wei CHEN. Numerical calculation of temperature field of energy storage battery module and optimization design of heat dissipation system [J]. Energy Storage Science and Technology, 2024, 13(4): 1159-1166. |
[9] | Yaning ZHU, Zhendong ZHANG, Lei SHENG, Long CHEN, Zehua ZHU, Linxiang FU, Qing BI. Thermal runaway experiment of 21700 lithium-ion battery under different health conditions [J]. Energy Storage Science and Technology, 2024, 13(3): 971-980. |
[10] | Qilin GUO, Liangyu TAO, Zheshu MA, Yongming GU, Yuting WANG. Numerical simulation analysis of combustion of electric sport utility vehicles [J]. Energy Storage Science and Technology, 2024, 13(3): 1000-1008. |
[11] | Zhige TAO, Shunbing ZHU, Shuangping HOU, Ke LI, He WANG. Comprehensive research on fire and safety protection technology for lithium battery energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(2): 536-545. |
[12] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[13] | Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB [J]. Energy Storage Science and Technology, 2024, 13(2): 381-389. |
[14] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
[15] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||