Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 381-389.doi: 10.19799/j.cnki.2095-4239.2023.0607
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yang ZHOU(), Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU()
Received:
2023-09-05
Revised:
2023-10-23
Online:
2024-02-28
Published:
2024-03-01
Contact:
Quan XU
E-mail:zhouyang@cup.edu.cn;xuquan@cup.edu.cn
CLC Number:
Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB[J]. Energy Storage Science and Technology, 2024, 13(2): 381-389.
Fig. 6
(a), (b) Cyclic voltammetry curves of C-Bi/CC and CC at different sweep speeds; (c) the relationship between electric double-layer current pair and scanning velocity; (d), (e) Cyclic voltammetry curves of the positive electrode of C-Bi/CC and CC at different sweep speeds; (f) C-Bi/CC cyclic voltammetry curves of the negative electrode at different sweep speeds; (g) Relationship between the peak current density of the C-Bi/CC and CC cathodes and the square root of the scan rate; (h) Relationship between the peak current density of the C-Bi/CC anode and the square root of the scan rateeak current density of the C-Bi/CC negative electrode and the square root of the scan rate"
Fig. 8
(a) Charge-discharge curve; (b) energy efficiency; (c) Coulomb efficiency; (d) voltage efficiency; (e) the rate of decay of discharge capacity; (f) charging and discharging DC internal resistance; (g) Coulombic efficiency, energy efficiency, voltage efficiency at different current densities; (h) time-voltage curve; (i) Coulombic efficiency, energy efficiency, voltage efficiency of C-Bi/CC electrode in long cycles"
1 | 南明君, 乔琳, 刘玉琴, 等. 无机水系液流电池研究[J]. 化学进展, 2022, 34(6): 1402-1413. |
NAN M J, QIAO L, LIU Y Q, et al. A review of inorganic aqueous flow battery[J]. Progress in Chemistry, 2022, 34(6): 1402-1413. | |
2 | 谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057. |
XIE C X, ZHENG Q, LI X F, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057. | |
3 | 张君慧, 曾义凯, 袁雨峰, 等. 铁铬液流电池关键材料研究进展[J]. 制冷与空调(四川), 2023, 37(1): 129-136. |
ZHANG J H, ZENG Y K, YUAN Y F, et al. Research progress on key materials of the iron-chromium flow battery[J]. Refrigeration & Air Conditioning, 2023, 37(1): 129-136. | |
4 | TIEMANN P H, BENSMANN A, STUKE V, et al. Electrical energy storage for industrial grid fee reduction-A large scale analysis[J]. Energy Conversion and Management, 2020, 208: 112539. |
5 | M GÜR T. Correction: Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 3055. |
6 | JAVED M S, MA T, JURASZ J, et al. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives[J]. Renewable Energy, 2020, 148: 176-192. |
7 | LEI J Z, GONG Q W. Optimal allocation of a hybrid energy storage system considering its dynamic operation characteristics for wind power applications in active distribution networks[J]. International Journal of Energy Research, 2018, 42(13): 4184-4196. |
8 | SUN C Y, ZHANG H. Review of the development of first-generation redox flow batteries: Iron-chromium system[J]. ChemSusChem, 2022, 15(1): e202101798. |
9 | CHENG D S, REINER A, HOLLAX E. Activation of hydrochloric acid-CrCl3 ·6H2 solutions with N-alkyfamines[J]. Journal of Applied Electrochemistry, 1985, 15(1): 63-70. |
10 | GAHN R F, HAGEDORN N, LING J S. Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature[C]//Intersoc. Energy Conversion Engr. Conf, 1983 |
11 | AHN Y, MOON J, PARK S E, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal, 2021, 421: 127855. |
12 | REN H L, SU Y, ZHAO S, et al. Research on the performance of cobalt oxide decorated graphite felt as electrode of iron-chromium flow battery[J]. ChemElectroChem, 2023, 10(5): e202201146. |
13 | JIANG Y Q, CHENG G, LI Y H, et al. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@C from metal-organic framework[J]. Chemical Engineering Journal, 2021, 415: 129014. |
14 | NGUYEN V H, NGUYEN T D, VAN NGUYEN T. Microwave-assisted solvothermal synthesis and photocatalytic activity of bismuth(III) based metal-organic framework[J]. Topics in Catalysis, 2020, 63(11): 1109-1120. |
15 | XU J Y, XIE Y Y, ZHENG J Q, et al. A sodiophilic carbon cloth decorated with Bi-MOF derived porous Bi@C nanosheets for stable Na metal anode[J]. Journal of Electroanalytical Chemistry, 2021, 903: 115853. |
16 | TRÖBS L, WILKE M, SZCZERBA W, et al. Mechanochemical synthesis and characterisation of two new bismuth metal organic frameworks[J]. CrystEngComm, 2014, 16(25): 5560-5565. |
17 | GAO Y, YI X H, WANG C C, et al. Effective Cr(VI) reduction over high throughput Bi-BDC MOF photocatalyst[J]. Materials Research Bulletin, 2023, 158: 112072. |
18 | SCHALENBACH M. Impedance spectroscopy and cyclic voltammetry to determine double layer capacitances and electrochemically active surface areas[DB/OL]. (2018-12-31) https://api.semanticscholar.org/CorpusID:239437296. |
19 | FRANZ S, ARAB H, CHIARELLO G L, et al. Single-step preparation of large area TiO2 photoelectrodes for water splitting[J]. Advanced Energy Materials, 2020, 10(23): 2000652. |
20 | 冯晓健. 全钒液流电池碳纤维/金属氧化物复合电极的构建及性能研究[D]. 唐山: 华北理工大学, 2022. |
FENG X J. Construction and properties of carbon fiber/metal oxide composite electrode for vanadium flow battery[D]. Tangshan: North China University of Science and Technology, 2022. | |
21 | 褚夫军. Cr3+/Cr2+氧化还原电对性能及其在液流电池中的应用研究[D]. 北京: 北京化工大学, 2022. |
CHU F J. Performance of Cr3+/Cr2+ redox couple and its application in flow battery[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
22 | ZHANG F F, HUANG S P, WANG X, et al. Redox-targeted catalysis for vanadium redox-flow batteries[J]. Nano Energy, 2018, 52: 292-299. |
[1] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[2] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
[3] | Hong LIU, Junxia LI. Modeling and simulation research on energy storage system distribution network operation of high specific energy secondary lithium battery electrode materials [J]. Energy Storage Science and Technology, 2024, 13(1): 342-344. |
[4] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[5] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[6] | Jin WANG, Shaofei ZHANG, Jinfeng SUN, Tiantian LI. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489. |
[7] | Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408. |
[8] | Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite [J]. Energy Storage Science and Technology, 2023, 12(3): 698-709. |
[9] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
[10] | Yanyan ZHANG, Yaxuan XIONG, Yahui CHEN, Ruixing QUAN, Guanggui CHENG, Yanqi ZHAO, Yulong DING. Recent progress in the investigation and application of packed-bed latent thermal energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(12): 3852-3872. |
[11] | Rong YIN. The application of computer technology in enhancing the energy efficiency of phase change thermal storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3889-3891. |
[12] | Ziwei YUAN, Chuyuan LIN, Ziyan YUAN, Xiaoli SUN, Qingrong QIAN, Qinghua CHEN, Lingxing ZENG. The research process on low temperature performance of zinc ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 278-298. |
[13] | Xiaosa ZHANG, Hongyuan WANG, Zhenbiao LI, Zhimei XIA. New process of sulfated roasting-water leaching for treating electrode material of spent lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2066-2074. |
[14] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[15] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||