1 |
PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188. DOI: 10.1149/1.1837571.
|
2 |
TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940. DOI: 10.1039/c4cs00442f.
|
3 |
MARTHA S, GRINBLAT J, HAIK O, et al. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2009, 48(45): 8559-8563. DOI: 10.1002/anie.200903587.
|
4 |
ARAVINDAN V, GNANARAJ J, LEE Y S, et al. LiMnPO4–A next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518-3539. DOI: 10.1039/C2TA01393B.
|
5 |
OSORIO-GUILLÉN J M, HOLM B, AHUJA R, et al. A theoretical study of olivine LiMPO4 cathodes[J]. Solid State Ionics, 2004, 167(3/4): 221-227. DOI: 10.1016/j.ssi.2003.09.015.
|
6 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438.
|
7 |
NISHIMURA S I, KOBAYASHI G, OHOYAMA K, et al. Experimental visualization of lithium diffusion in LixFePO4[J]. Nature Materials, 2008, 7(9): 707-711. DOI: 10.1038/nmat2251.
|
8 |
JENSEN K M Ø, CHRISTENSEN M, GUNNLAUGSSON H P, et al. Defects in hydrothermally synthesized LiFePO4 and LiFe1- xMnxPO4 cathode materials[J]. Chemistry of Materials, 2013, 25(11): 2282-2290. DOI: 10.1021/cm4008393.
|
9 |
AN L W, LIU H, LIU Y Y, et al. The best addition of graphene to LiMn0.7Fe0.3PO4/C cathode material synthesized by wet ball milling combined with spray drying method[J]. Journal of Alloys and Compounds, 2018, 767: 315-322. DOI: 10.1016/j.jallcom.2018.07.043.
|
10 |
CHOI W, MANTHIRAM A. Comparison of metal ion dissolutions from lithium ion battery cathodes[J]. Journal of the Electrochemical Society, 2006, 153(9): A1760. DOI: 10.1149/1.2219710.
|
11 |
PIECZONKA N P W, LIU Z Y, LU P, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(31): 15947-15957. DOI: 10.1021/jp405158m.
|
12 |
GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. Journal of the Electrochemical Society, 2017, 164(2): A389-A399. DOI: 10.1149/2.1111702jes.
|
13 |
周格. 锂离子电池失效分析—过渡金属溶解沉积及产气研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2019.
|
|
ZHOU G. Failure analysis of lithium-ion batteries— Study on dissolution and deposition of transition metals and gas production[D]. Beijing: Institute of Physics, Chinese Academy of Science, 2019.
|
14 |
YANG L, TAKAHASHI M, WANG B F. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234. DOI: 10.1016/j.electacta.2005.09.014.
|
15 |
EVERTZ M, HORSTHEMKE F, KASNATSCHEEW J, et al. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique[J]. Journal of Power Sources, 2016, 329: 364-371. DOI: 10.1016/j.jpowsour.2016.08.099.
|
16 |
EVERTZ M, KASNATSCHEEW J, WINTER M, et al. Investigation of various layered lithium ion battery cathode materials by plasma- and X-ray-based element analytical techniques[J]. Analytical and Bioanalytical Chemistry, 2019, 411(1): 277-285. DOI: 10.1007/s00216-018-1441-8.
|
17 |
XU W Q, ZHENG Y H, CHENG Y, et al. Understanding the effect of Al doping on the electrochemical performance improvement of the LiMn2O4 cathode material[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45446-45454. DOI: 10.1021/acsami. 1c11315.
|
18 |
XIAO L F, ZHAO Y Q, YANG Y Y, et al. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method[J]. Electrochimica Acta, 2008, 54(2): 545-550. DOI: 10.1016/j.electacta.2008.07.037.
|
19 |
TANG X Y, ZHOU J, BAI M, et al. Investigation of the self-discharge behaviors of the LiMn2O4 cathode at elevated temperatures: in situ X-ray diffraction analysis and a co-doping mitigation strategy[J]. Journal of Materials Chemistry A, 2019, 7(21): 13364-13371. DOI: 10.1039/C9TA02718A.
|
20 |
LI P W, LUO S H, WANG J C, et al. Preparation and electrochemical properties of Al-F-co-doped spinel LiMn2O4 single-crystal material for lithium-ion battery[J]. International Journal of Energy Research, 2021, 45(15): 21158-21169. DOI: 10.1002/er.7169.
|
21 |
DE TAEYE L L, TEIRLYNCK I, VEREECKEN P M. The role of electronic junctions in artificial interface engineering: The case for indium tin oxide on LiMn2O4 electrodes[J]. Advanced Functional Materials, 2021, 31(49): 2105180. DOI: 10.1002/adfm. 202105180.
|
22 |
YANG J X, LI C J, GUANG T J, et al. Zero lithium miscibility gap enables high-rate equimolar Li(Mn,Fe)PO4 solid solution[J]. Nano Letters, 2021, 21(12): 5091-5097. DOI: 10.1021/acs.nanolett.1c00957.
|
23 |
ZHANG H, TANG Y H, SHEN J Q, et al. Antisite defects and Mg doping in LiFePO4: A first-principles investigation[J]. Applied Physics A, 2011, 104(2): 529-537. DOI: 10.1007/s00339-011-6309-0.
|
24 |
WANG C, XING L D, VATAMANU J, et al. Overlooked electrolyte destabilization by manganese (Ⅱ) in lithium-ion batteries[J]. Nature Communications, 2019, 10(1): 3423. DOI: 10.1038/s41467-019-11439-8.
|