Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 21-29.doi: 10.19799/j.cnki.2095-4239.2024.0620
• Energy Storage Materials and Devices • Previous Articles Next Articles
Lan WU1(), Jie YANG1, Lei GENG1, Run HU1, Shanglong PENG2
Received:
2024-07-08
Revised:
2024-07-30
Online:
2025-01-28
Published:
2025-02-25
Contact:
Lan WU
E-mail:945934161@qq.com
CLC Number:
Lan WU, Jie YANG, Lei GENG, Run HU, Shanglong PENG. Residual alkali converted sodium compensation cladding on the surface of sodium ion battery cathode[J]. Energy Storage Science and Technology, 2025, 14(1): 21-29.
1 | DUFFNER F, KRONEMEYER N, TÜBKE J, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021, 6: 123-134. DOI: 10.1038/s41560-020-00748-8. |
2 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 18013. DOI: 10.1038/natrevmats.2018.13. |
3 | GOODENOUGH J B, GAO H C. A perspective on the Li-ion battery[J]. Science China Chemistry, 2019, 62(12): 1555-1556. DOI: 10.1007/s11426-019-9610-3. |
4 | JIN T, WANG P F, WANG Q C, et al. Realizing complete solid-solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2020, 59(34): 14511-14516. DOI: 10.1002/anie.202003972. |
5 | HU Y S, LU Y X. 2019 Nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries[J]. ACS Energy Letters, 2019, 4(11): 2689-2690. DOI: 10.1021/acsenergylett.9b02190. |
6 | SEONG W M, KIM Y, MANTHIRAM A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries[J]. Chemistry of Materials, 2020, 32(22): 9479-9489. DOI: 10.1021/acs.chemmater.0c02808. |
7 | LAURO S N, BURROW J N, MULLINS C B. Restructuring the lithium-ion battery: A perspective on electrode architectures[J]. eScience, 2023, 3(4): 100152. DOI: 10.1016/j.esci.2023.100152. |
8 | YU C X, LI Y, WANG Z H, et al. Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery[J]. Rare Metals, 2022, 41(5): 1616-1625. DOI: 10.1007/s12598-021-01893-z. |
9 | WANG Q C, LI J B, JIN H B, et al. Prussian-blue materials: Revealing new opportunities for rechargeable batteries[J]. InfoMat, 2022, 4(6): e12311. DOI: 10.1002/inf2.12311. |
10 | XIE H J, WU Z L, WANG Z Y, et al. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(7): 3606-3612. DOI: 10.1039/C9TA12429B. |
11 | TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. DOI: 10.1016/j.jpowsour. 2018.06.067. |
12 | ZHANG B, DUGAS R, ROUSSE G, et al. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries[J]. Nature Communications, 2016, 7: 10308. DOI: 10. 1038/ncomms10308. |
13 | NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): e2001419. DOI: 10.1002/adma. 202001419. |
14 | MARTINEZ DE ILARDUYA J, OTAEGUI L, LÓPEZ DEL AMO J M, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery[J]. Journal of Power Sources, 2017, 337: 197-203. DOI: 10.1016/j.jpowsour.2016.10.084. |
15 | WANG Q C, DING X Y, LI J B, et al. Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature[J]. Chemical Engineering Journal, 2022, 448: 137740. DOI: 10.1016/j.cej.2022.137740. |
16 | YOU Y, DOLOCAN A, LI W, et al. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries[J]. Nano Letters, 2019, 19(1): 182-188. DOI: 10.1021/acs.nanolett.8b03637. |
17 | PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. DOI: 10.1021/acs.chemmater.5b02684. |
18 | ZHANG J X, CUI C Y, WANG P F, et al. "Water-in-salt" polymer electrolyte for Li-ion batteries[J]. Energy & Environmental Science, 2020, 13(9): 2878-2887. DOI: 10.1039/D0EE01510E. |
19 | JO C H, CHOI J U, YASHIRO H, et al. Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3903-3909. DOI: 10.1039/C8TA09833F. |
20 | MARELLI E, MARINO C, BOLLI C, et al. How to overcome Na deficiency in full cell using P2-phase sodium cathode–A proof of concept study of Na-rhodizonate used as sodium reservoir[J]. Journal of Power Sources, 2020, 450: 227617. DOI: 10.1016/j.jpowsour.2019.227617. |
21 | SINGH G, LÓPEZ DEL AMO J M, GALCERAN M, et al. Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2[J]. Journal of Materials Chemistry A, 2015, 3(13): 6954-6961. DOI: 10.1039/c4ta06360k. |
22 | LI W, LI J P, LI R R, et al. Study on sodium storage properties of manganese-doped sodium vanadium phosphate cathode materials[J]. Battery Energy, 2023, 2(2). DOI: 10.1002/bte2. 20220042. |
23 | KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3: 290-300. DOI: 10.1038/s41560-018-0130-3. |
24 | SCHNELL J, GÜNTHER T, KNOCHE T, et al. All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production[J]. Journal of Power Sources, 2018, 382: 160-175. DOI: 10.1016/j.jpowsour.2018.02.062. |
25 | ZOU K Y, CAI P, TIAN Y, et al. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors[J]. Small Methods, 2020, 4(3): 1900763. DOI: 10.1002/smtd.201900763. |
26 | DENG X L, ZOU K Y, CAI P, et al. Advanced battery-type anode materials for high-performance sodium-ion capacitors[J]. Small Methods, 2020, 4(10): 2000401. DOI: 10.1002/smtd.202000401. |
27 | JIA R, SHEN G Z, CHEN D. Recent progress and future prospects of sodium-ion capacitors[J]. Science China Materials, 2020, 63(2): 185-206. DOI: 10.1007/s40843-019-1188-x. |
28 | ZHANG H W, HU M X, LV Q, et al. Advanced materials for sodium-ion capacitors with superior energy-power properties: Progress and perspectives[J]. Small, 2020, 16(15): e1902843. DOI: 10.1002/smll.201902843. |
29 | ZHANG Y D, JIANG J M, AN Y F, et al. Sodium-ion capacitors: Materials, mechanism, and challenges[J]. ChemSusChem, 2020, 13(10): 2522-2539. DOI: 10.1002/cssc.201903440. |
30 | WANG K F, SUN F, SU Y L, et al. Natural template derived porous carbon nanoplate architectures with tunable pore configuration for a full-carbon sodium-ion capacitor[J]. Journal of Materials Chemistry A, 2021, 9(41): 23607-23618. DOI: 10.1039/D1TA04485K. |
[1] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. |
[2] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[3] | Cuihong ZENG, Xiujuan CHEN, Man LI, Wenji YIN, Jiming PENG, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3731-3741. |
[4] | Ding ZHANG, Zixian YE, Zhenming LIU, Qun YI, Lijuan SHI, Huijuan GUO, Yi HUANG, Li WANG, Xiangming HE. Research progress of black phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2482-2490. |
[5] | Junpeng GUO, Qi SUN, Yuefang CHEN, Yuwen ZHAO, Huan YANG, Zhijia ZHANG. Preparation of three-dimensional multistage iron oxide/carbon nanofiber integrated electrode and sodium storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1469-1479. |
[6] | Xue YUAN, Hongji LI, Wenhui BAI, Zhengxi LI, Libin YANG, Kai WANG, Zhe CHEN. Application of biomass-derived carbon-based anode materials in sodium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 721-742. |
[7] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[8] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[9] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[10] | Fei LIU, Peiwen ZHAO, Jingxiang ZHAO, Xianwei SUN, Miaomiao LI, Jinghao WANG, Yanxin YIN, Zuoqiang DAI, Lili ZHENG. Research progress of hard carbon anode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3497-3509. |
[11] | Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415. |
[12] | Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. |
[13] | CHE Haiying, YU Yan, YANG Xinrong, LIAO Xiaozhen, LI Linsen, DENG Yonghong, MA Zifeng. Behavior of sodium-ion battery electrolytes based on the co-solvents of polyfluorinated ether and organic carbonates [J]. Energy Storage Science and Technology, 2020, 9(2): 392-399. |
[14] | ZHAO Zhiwei, PENG Zhangquan. Differential electrochemical mass spectroscopy: A pivotal technology for investigating lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(1): 1-13. |
[15] | TIAN Liyuan, JU Xiaoxia, XIANG Feng, ZHOU Ming. Recent research progress of metal compounds as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1211-1216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||