Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (1): 1-13.doi: 10.12028/j.issn.2095-4239.2018.0131
Previous Articles Next Articles
ZHAO Zhiwei1,2, PENG Zhangquan1,2
Received:
2018-07-27
Revised:
2018-08-24
Online:
2019-01-01
Published:
2018-08-28
CLC Number:
ZHAO Zhiwei, PENG Zhangquan. Differential electrochemical mass spectroscopy: A pivotal technology for investigating lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 1-13.
[1] YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111:3577-3613. [2] NITTA N, WU F, LEE J T, et al. Li-ion battery materials:Present and future[J]. Materials Today, 2015, 18:252-264. [3] ETACHERI V, MAROM R, RAN E, et al. Challenges in the development of advanced Li-ion batteries:A review[J]. Energy & Environmental Science, 2011, 4:3243-3262. [4] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126:2047-2051. [5] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55:6332-6341. [6] AURBACH D, MARKOVSKY B, SALITRA G, et al. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries[J]. Journal of Power Sources, 2007, 165:491-499. [7] TRIPATHI A M, SU W N, HWANG B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018, 47:736-851. [8] TOKRANOV A, SHELDON B W, LI C, et al. In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6:6672-6686. [9] HATCHARD T D, DAHN J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of the Electrochemical Society, 2004, 151:A838-A842. [10] GUERFI A, DONTIGNY M, CHAREST P, et al. Improved electrolytes for Li-ion batteries:Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance[J]. Journal of Power Sources, 2010, 195:845-852. [11] MOSHKOVICH M, COJOCARU M, GOTTLIEB H E, et al. The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS[J]. Journal of Electroanalytical Chemistry, 2001, 497:84-96. [12] HY S, FELIX F, RICK J, et al. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3 Mn(2-x)/3] O2(0 ≤ x ≤ 0.5)[J]. Journal of the American Chemical Society, 2014, 136:999-1007. [13] WOLTER O, HEITBAUM J. Differential electrochemical mass spectroscopy (DEMS)-A new method for the study of electrode processes[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1984, 88:2-6. [14] BRUCKENSTEIN S, GADDE R R. Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products[J]. Journal of Materials Chemistry, 1971, 18:5638-5646. [15] TEGTMEYER D, HEITBAUM J, HEINDRICHS A. Electrochemical on line mass spectrometry on a rotating electrode inlet system[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1989, 93:201-206. [16] BOGDANOFF P, FRIEBE P, ALONSO-VANTE N. A new inlet system for differential electrochemical mass spectroscopy applied to the photocorrosion of p-InP(111) single crystals[J]. Journal of the Electrochemical Society, 1998, 145:576-582. [17] GAO Y, TSUJI H, HATTORI H, et al. New on-line mass spectrometer system designed for platinum-single crystal electrode and electroreduction of acetylene[J]. Journal of Electroanalytical Chemistry, 1994, 372:195-200. [18] HOLZAPFEL M, WÜRSIG A, SCHEIFELE W, et al. Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries[J]. Journal of Power Sources, 2007, 174:1156-1160. [19] MCCLOSKEY B D, BETHUNE D S, SHELBY R M, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. The Journal of Physical Chemistry Letters, 2011, 2:1161-1166. [20] PENG Z, FREUNBERGER S A, CHEN Y, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337:563-566. [21] BERKES B B, JOZWIUK A, VRAČAR M, et al. Online continuous flow differential electrochemical mass spectrometry with a realistic battery setup for high-precision, long-term cycling tests[J]. Analytical Chemistry, 2015, 87:5878-83. [22] BALTRUSCHAT H. Differential electrochemical mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2004, 15:1693-1706. [23] 王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装,充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2):324-344. WANG Qiyu, CHU Geng, ZHANG Jienan, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell[J]. Energy Storage Science and Thechnology, 2018, 7(2):324-344. [24] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114:11503-11618. [25] GAUTHIER M, CARNEY T J, GRIMAUD A, et al. Electrode-electrolyte interface in Li-ion batteries:Current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6:4653-4672. [26] NOVÁK P, GOERS D, HARDWICK L, et al. Advanced in situ characterization methods applied to carbonaceous materials[J]. Journal of Power Sources, 2005, 146:15-20. [27] JOHO F, NOVÁK P. SNIFTIRS investigation of the oxidative decomposition of organic-carbonate-based electrolytes for lithium-ion cells[J]. Electrochimica Acta, 2000, 45:3589-3599. [28] ARAKAWA M, YAMAKI J I. Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes[J]. Journal of Power Sources, 1995, 54:250-254. [29] UFHEIL J, WÜRSIG A, SCHNEIDER O D, et al. Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte[J]. Electrochemistry Communications, 2005, 7:1380-1384. [30] MICHALAK B, BERKES B B, SOMMER H, et al. Gas evolution in LiNi0.5Mn1.5O4/graphite cells studied in operando by a combination of differential electrochemical mass spectrometry, neutron imaging, and pressure measurements[J]. Analytical Chemistry, 2016, 88:2877-2883. [31] ONUKI M, KINOSHITA S, SAKATA Y, et al. Identification of the source of evolved gas in Li-ion batteries using C-labeled solvents[J]. Journal of the Electrochemical Society, 2008, 155:A794-A797. [32] ZHANG B, METZGER M, SOLCHENBACH S, et al. Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation[J]. The Journal of Physical Chemistry C, 2015, 119:11337-11348. [33] SHEARING P, WU Y, HARRIS S J, et al. In situ X-Ray spectroscopy and imaging of battery materials[J]. Electrochemical Society Interface, 2011, 20:43-47. [34] HU E, YU X, LIN R, et al. Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3:690-698. [35] DING Y, LI Z F, TIMOFEEVA E V, et al. In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8:doi:10.1002/aenm.201702134. [36] YOU H, PIERCE M, KOMANICKY V, et al. Study of electrode surface dynamics using coherent surface X-ray scattering[J]. Electrochimica Acta, 2012, 82:570-575. [37] DEDRYVÈRE R, LARUELLE S, GRUGEON S, et al. XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode[J]. Journal of the Electrochemical Society, 2005, 152:A689-A696. [38] JUNFENG Y, NICKOLAY S, ALEXANDER K, et al. In-situ spectro-electrochemical insight revealing distinctive silicon anode solid electrolyte interphase formation in a lithium-ion battery[J]. Chemistry Select, 2016, 1:572-576. [39] LI G, LI H, MO Y, et al. Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS)[J]. Journal of Power Sources, 2002, 104:190-194. [40] MEYER B M, LEIFER N, SAKAMOTO S, et al. High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters, 2005, 8:A145-A148. [41] TANG W, GOH B M, HU M Y, et al. In situ Raman and nuclear magnetic resonance study of trapped lithium in the solid electrolyte interface of reduced graphene oxide[J]. The Journal of Physical Chemistry C, 2016, 120:2600-2608. [42] DUPRÉ N, MOREAU P, DE VITO E, et al. Multiprobe study of the solid electrolyte interphase on silicon-based electrodes in full-cell configuration[J]. Chemistry of Materials, 2016, 28:2557-2572. [43] KINOSHITA K, BONEVICH J, SONG X, et al. Transmission electron microscopy of carbons for lithium intercalation[J]. Solid State Ionics, 1996, 86-88:1343-1350. [44] BECKER C R, PROKES S M, LOVE C T. Enhanced lithiation cycle stability of ALD-coated confined a-Si microstructures determined using in situ AFM[J]. ACS Applied Materials & Interfaces, 2016, 8:530-537. [45] JUSYS Z. A new approach for simultaneous DEMS and EQCM:Electrooxidation of adsorbed CO on Pt and Pt-Ru[J]. Journal of the Electrochemical Society, 1999, 146:1093-1098. [46] ANDERSON M S. Locally enhanced Raman spectroscopy with an atomic force microscope[J]. Applied Physics Letters, 2000, 76:3130-3132. [47] LI Y, LI Y, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358:506-510. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[3] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[4] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[5] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[8] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[9] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[10] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[11] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[12] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[15] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||