Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 13-20.doi: 10.19799/j.cnki.2095-4239.2024.0649
• Energy Storage Materials and Devices • Previous Articles Next Articles
Fanfeng LIU(), Tingting WU(
), Shengyao WEN, Jianhang GAO, Meng CHEN, Chi LI
Received:
2024-07-15
Revised:
2024-07-22
Online:
2025-01-28
Published:
2025-02-25
Contact:
Tingting WU
E-mail:051683@evebattery.com;097852@evebattery.com
CLC Number:
Fanfeng LIU, Tingting WU, Shengyao WEN, Jianhang GAO, Meng CHEN, Chi LI. A study on dissolution of transition metal ions and influence on the cycling performance of LiMn0.6Fe0.4PO4[J]. Energy Storage Science and Technology, 2025, 14(1): 13-20.
1 | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188. DOI: 10.1149/1.1837571. |
2 | TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940. DOI: 10.1039/c4cs00442f. |
3 | MARTHA S, GRINBLAT J, HAIK O, et al. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2009, 48(45): 8559-8563. DOI: 10.1002/anie.200903587. |
4 | ARAVINDAN V, GNANARAJ J, LEE Y S, et al. LiMnPO4–A next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518-3539. DOI: 10.1039/C2TA01393B. |
5 | OSORIO-GUILLÉN J M, HOLM B, AHUJA R, et al. A theoretical study of olivine LiMPO4 cathodes[J]. Solid State Ionics, 2004, 167(3/4): 221-227. DOI: 10.1016/j.ssi.2003.09.015. |
6 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438. |
7 | NISHIMURA S I, KOBAYASHI G, OHOYAMA K, et al. Experimental visualization of lithium diffusion in LixFePO4[J]. Nature Materials, 2008, 7(9): 707-711. DOI: 10.1038/nmat2251. |
8 | JENSEN K M Ø, CHRISTENSEN M, GUNNLAUGSSON H P, et al. Defects in hydrothermally synthesized LiFePO4 and LiFe1- xMnxPO4 cathode materials[J]. Chemistry of Materials, 2013, 25(11): 2282-2290. DOI: 10.1021/cm4008393. |
9 | AN L W, LIU H, LIU Y Y, et al. The best addition of graphene to LiMn0.7Fe0.3PO4/C cathode material synthesized by wet ball milling combined with spray drying method[J]. Journal of Alloys and Compounds, 2018, 767: 315-322. DOI: 10.1016/j.jallcom.2018.07.043. |
10 | CHOI W, MANTHIRAM A. Comparison of metal ion dissolutions from lithium ion battery cathodes[J]. Journal of the Electrochemical Society, 2006, 153(9): A1760. DOI: 10.1149/1.2219710. |
11 | PIECZONKA N P W, LIU Z Y, LU P, et al. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(31): 15947-15957. DOI: 10.1021/jp405158m. |
12 | GILBERT J A, SHKROB I A, ABRAHAM D P. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells[J]. Journal of the Electrochemical Society, 2017, 164(2): A389-A399. DOI: 10.1149/2.1111702jes. |
13 | 周格. 锂离子电池失效分析—过渡金属溶解沉积及产气研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2019. |
ZHOU G. Failure analysis of lithium-ion batteries— Study on dissolution and deposition of transition metals and gas production[D]. Beijing: Institute of Physics, Chinese Academy of Science, 2019. | |
14 | YANG L, TAKAHASHI M, WANG B F. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234. DOI: 10.1016/j.electacta.2005.09.014. |
15 | EVERTZ M, HORSTHEMKE F, KASNATSCHEEW J, et al. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique[J]. Journal of Power Sources, 2016, 329: 364-371. DOI: 10.1016/j.jpowsour.2016.08.099. |
16 | EVERTZ M, KASNATSCHEEW J, WINTER M, et al. Investigation of various layered lithium ion battery cathode materials by plasma- and X-ray-based element analytical techniques[J]. Analytical and Bioanalytical Chemistry, 2019, 411(1): 277-285. DOI: 10.1007/s00216-018-1441-8. |
17 | XU W Q, ZHENG Y H, CHENG Y, et al. Understanding the effect of Al doping on the electrochemical performance improvement of the LiMn2O4 cathode material[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45446-45454. DOI: 10.1021/acsami. 1c11315. |
18 | XIAO L F, ZHAO Y Q, YANG Y Y, et al. Enhanced electrochemical stability of Al-doped LiMn2O4 synthesized by a polymer-pyrolysis method[J]. Electrochimica Acta, 2008, 54(2): 545-550. DOI: 10.1016/j.electacta.2008.07.037. |
19 | TANG X Y, ZHOU J, BAI M, et al. Investigation of the self-discharge behaviors of the LiMn2O4 cathode at elevated temperatures: in situ X-ray diffraction analysis and a co-doping mitigation strategy[J]. Journal of Materials Chemistry A, 2019, 7(21): 13364-13371. DOI: 10.1039/C9TA02718A. |
20 | LI P W, LUO S H, WANG J C, et al. Preparation and electrochemical properties of Al-F-co-doped spinel LiMn2O4 single-crystal material for lithium-ion battery[J]. International Journal of Energy Research, 2021, 45(15): 21158-21169. DOI: 10.1002/er.7169. |
21 | DE TAEYE L L, TEIRLYNCK I, VEREECKEN P M. The role of electronic junctions in artificial interface engineering: The case for indium tin oxide on LiMn2O4 electrodes[J]. Advanced Functional Materials, 2021, 31(49): 2105180. DOI: 10.1002/adfm. 202105180. |
22 | YANG J X, LI C J, GUANG T J, et al. Zero lithium miscibility gap enables high-rate equimolar Li(Mn,Fe)PO4 solid solution[J]. Nano Letters, 2021, 21(12): 5091-5097. DOI: 10.1021/acs.nanolett.1c00957. |
23 | ZHANG H, TANG Y H, SHEN J Q, et al. Antisite defects and Mg doping in LiFePO4: A first-principles investigation[J]. Applied Physics A, 2011, 104(2): 529-537. DOI: 10.1007/s00339-011-6309-0. |
24 | WANG C, XING L D, VATAMANU J, et al. Overlooked electrolyte destabilization by manganese (Ⅱ) in lithium-ion batteries[J]. Nature Communications, 2019, 10(1): 3423. DOI: 10.1038/s41467-019-11439-8. |
[1] | Xiaowei HUANG, Shaopeng LI, Xiaogang ZHANG. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. |
[2] | Yingying HU, Jingyi WANG, Xiangwei WU, Jianguo WEN, Zhaoyin WEN. Analysis of long cycle performance and voltage relaxation curves of tubular ZEBRA batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 3021-3027. |
[3] | Xiaomei LIU, Bin YAO, Leqiong XIE, Qiao HU, Li WANG, Xiangming HE. Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures [J]. Energy Storage Science and Technology, 2021, 10(4): 1338-1343. |
[4] | Fanfeng LIU, Cheng CHEN, Zhiyuan ZHU, Weikang ZHANG, Zhengzhong LYU. The influence of N/P ratio on the performance of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1325-1329. |
[5] | ZHANG Xin, KONG Lingli, GAO Tengyue, LI Haitao, YAO Xiaohui, LI Fuxuan. Analysis and improvement of cycle performance for Ni-rich lithium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 813-817. |
[6] | XU Zhibin, WU Guoqiang, HUANG Weiguo, CHEN Li, ZHANG Xiong, ZHOU Zhixue, LIU Xiaowei. Optimization formula of lead-carbon negative electrode by orthogonal experimental design [J]. Energy Storage Science and Technology, 2019, 8(S1): 85-89. |
[7] | WU Mingxia, YANG Chongyang, ZHANG Qinglin, CHEN Si, AN Zhongxun, ZHOU Yirong. Performance of ceramic composite separators in lithium nickel cobalt manganese oxide/graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(4): 725-731. |
[8] | REN Jing, HUANG Zhimei, SHEN Yue, HUANG Yunhui. Achieving high performance lithium-O2 battery by introducing a novel urea electrolyte [J]. Energy Storage Science and Technology, 2018, 7(4): 667-673. |
[9] | JIN Yi1, WANG Le1, YANG Cenyu1, SONG Jie1, XU Chao2. Cycle performance of a packed bed based cold storage device [J]. Energy Storage Science and Technology, 2017, 6(4): 708-718. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 377
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||