| 1 | WANG Y G, HE P, ZHOU H S. Olivine LiFePO4: Development and future[J]. Energy & Environmental Science, 2011, 4(3): 805-817. | 
																													
																							| 2 | 官亦标, 沈进冉, 刘家亮, 等. 以安全高质量应用为导向的储能锂离子电池综合性能评价标准[J]. 储能科学与技术, 2023, 12(9): 2946-2953. | 
																													
																							|  | GUAN Y B, SHEN J R, LIU J L, et al. Comprehensive performance evaluation standards for energy storage lithium-ion batteries guided by safe and high-quality applications[J]. Energy Storage Science and Technology, 2023, 12(9): 2946-2953. | 
																													
																							| 3 | LYBBERT M, GHAEMI Z, BALAJI A K, et al. Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 144: 111004. | 
																													
																							| 4 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. | 
																													
																							| 5 | DENG L, ZHENG Y, ZHENG X M, et al. Design criteria for silicon-based anode binders in half and full cells[J]. Advanced Energy Materials, 2022, 12(31): 2200850. | 
																													
																							| 6 | SUN L, LIU Y X, SHAO R, et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries[J]. Energy Storage Materials, 2022, 46: 482-502. | 
																													
																							| 7 | 谭毅, 王凯. 高比能量锂离子电池硅基负极材料研究进展[J]. 无机材料学报, 2019, 34(4): 349-357. | 
																													
																							|  | TAN Y, WANG K. Silicon-based anode materials applied in high specific energy lithium-ion batteries: A review[J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. | 
																													
																							| 8 | ZHANG H Q, CHENG J, LIU H B, et al. Prelithiation: A critical strategy towards practical application of high-energy-density batteries[J]. Advanced Energy Materials, 2023, 13(27): 2300466. | 
																													
																							| 9 | JIN L M, ZHENG J S, ZHENG J P. Theoretically quantifying the effect of pre-lithiation on energy density of Li-ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(1): 010532. | 
																													
																							| 10 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. | 
																													
																							|  | TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. ENERGY STORAGE SCIENCE AND TECHNOLOGY, 2021, 10(3): 800-812. | 
																													
																							| 11 | XU H, LI S, ZHANG C, et al. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries[J]. Energy & Environmental Science, 2019, 12(10): 2991-3000. | 
																													
																							| 12 | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. | 
																													
																							|  | HUANG X W, LI S P, ZHANG X G. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. | 
																													
																							| 13 | ZHANG L H, DOSE W M, VU A D, et al. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. Journal of Power Sources, 2018, 400: 549-555. | 
																													
																							| 14 | HUANG G X, LIANG J N, ZHONG X G, et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithium-ion batteries[J]. Nano Research, 2023, 16(3): 3872-3878. | 
																													
																							| 15 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. | 
																													
																							| 16 | PARK H, YOON T, KIM Y U, et al. Li2NiO2 as a sacrificing positive additive for lithium-ion batteries[J]. Electrochimica Acta, 2013, 108: 591-595. | 
																													
																							| 17 | LEE H B, BYEONA Y S, SONG C H, et al. Surface coating engineering of Li-excess cathode additive of lithium-ion batteries for initial charge compensation[J]. Applied Surface Science, 2023, 622: 156955. | 
																													
																							| 18 | 张贵萍, 闫筱炎, 王兵, 等. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. | 
																													
																							|  | ZHANG G P, YAN X Y, WANG B, et al. Long life lithium iron phosphate battery and its materials and process[J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140. | 
																													
																							| 19 | XU L, YANG Y, XIAO Y, et al. In-situ determination of onset lithium plating for safe Li-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 255-262. | 
																													
																							| 20 | 徐瑞琳, 曾涛, 刘欢, 等. 磷酸铁锂电池循环初期衰减快原因分析及性能改善[J]. 无机盐工业, 2023, 55(3): 92-97. | 
																													
																							|  | XU R L, ZENG T, LIU H, et al. Cause analysis of early cycling attenuation of LiFePO4 battery and its performance improvement[J]. Inorganic Chemicals Industry, 2023, 55(3): 92-97. |