Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1841-1849.doi: 10.19799/j.cnki.2095-4239.2024.1038
• Energy Storage Materials and Devices • Previous Articles Next Articles
Liang ZHANG1,2(), Xiong ZHOU2, Jiukang TENG2, Wenjing YANG1(
), Xueming LI1
Received:
2024-11-07
Revised:
2024-12-02
Online:
2025-05-28
Published:
2025-05-21
Contact:
Wenjing YANG
E-mail:zhy521zl@sina.com;yangwj308@163.com
CLC Number:
Liang ZHANG, Xiong ZHOU, Jiukang TENG, Wenjing YANG, Xueming LI. Electrochemical properties of fluorinated Keqin black/graphene composite materials[J]. Energy Storage Science and Technology, 2025, 14(5): 1841-1849.
1 | HAMWI A, GUÉRIN K, DUBOIS M. Fluorine-intercalated graphite for lithium batteries[M]//Fluorinated Materials for Energy Conversion. Amsterdam: Elsevier, 2005: 369-395. DOI: 10.1016/b978-008044472-7/50045-x. |
2 | GIRAUDET J, DELABARRE C, GUÉRIN K, et al. Comparative performances for primary lithium batteries of some covalent and semi-covalent graphite fluorides[J]. Journal of Power Sources, 2006, 158(2): 1365-1372. DOI: 10.1016/j.jpowsour.2005.10.020. |
3 | CHEN X Y, FAN K, LIU Y, et al. Recent advances in fluorinated graphene from synthesis to applications: Critical review on functional chemistry and structure engineering[J]. Advanced Materials, 2022, 34(1): 2101665. DOI: 10.1002/adma.202101665. |
4 | ZHOU R X, LI Y, FENG Y Y, et al. The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries[J]. Composites Communications, 2020, 21: 100396. DOI: 10.1016/j.coco.2020.100396. |
5 | LI X T, ZHANG H C, LIU C, et al. A MOF-derived multifunctional nano-porous fluorinated carbon for high performance lithium/fluorinated carbon primary batteries[J]. Microporous and Mesoporous Materials, 2021, 310: 110650. DOI: 10.1016/j.micromeso. 2020. 110650. |
6 | HIGHTOWER A, DAROLLES I, YAZAMI R. Surface species on Ag modified carbon fluoride (CFx) rechargeable battery electrodes measured by XPS[J]. ECS Meeting Abstracts, 2010, MA2010-03(1): 518. DOI: 10.1149/ma2010-03/1/518. |
7 | ZHANG H M, XIAO P, SHI J Y, et al. Silver-modified carbon fluoride as the cathode material for pouch-type primary lithium batteries[J]. Journal of Electronic Materials, 2021, 50(7): 4075-4082. DOI: 10.1007/s11664-021-08936-2. |
8 | SIDERIS P J, YEW R, NIEVES I, et al. Charge transfer in Li/CFx-silver vanadium oxide hybrid cathode batteries revealed by solid state 7Li and 19F nuclear magnetic resonance spectroscopy[J]. Journal of Power Sources, 2014, 254: 293-297. DOI: 10.1016/j.jpowsour.2013.12.108. |
9 | MEDURI P, CHEN H H, CHEN X L, et al. Hybrid CFx-Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter[J]. Electrochemistry Communications, 2011, 13(12): 1344-1348. DOI: 10.1016/j.elecom.2011.08.006. |
10 | JONES J P, JONES S C, KRAUSE F C, et al. Additive effects on Li‖CFx and Li‖CFx-MnO2 primary cells at low temperature[J]. Journal of the Electrochemical Society, 2017, 164(13): A3109-A3116. DOI: 10.1149/2.0831713jes. |
11 | NAGATA M, YI J, TOMCSI M, et al. Performance of lithium primary cell using a hybrid positive electrode of LiV3O8 and CFx[J]. ECS Transactions, 2011, 33(39): 223-237. DOI: 10.1149/1. 3589931. |
12 | YIN X D, LI Y, FENG Y Y, et al. Polythiophene/graphite fluoride composites cathode for high power and energy densities lithium primary batteries[J]. Synthetic Metals, 2016, 220: 560-566. DOI: 10.1016/j.synthmet.2016.07.032. |
13 | LI L, ZHU L, PAN Y, et al. Integrated polyaniline-coated CFx cathode materials with enhanced electrochemical capabilities for Li/CFx primary battery[J]. International Journal of Electrochemical Science, 2016, 11(8): 6838-6847. DOI: 10.20964/2016.08.41. |
14 | ZHANG S S, FOSTER D, READ J. Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFx cathode material[J]. Journal of Power Sources, 2009, 188(2): 601-605. DOI: 10.1016/j.jpowsour.2008.12.007. |
15 | ZHANG S S, FOSTER D, READ J. Carbothermal treatment for the improved discharge performance of primary Li/CFx battery[J]. Journal of Power Sources, 2009, 191(2): 648-652. DOI: 10.1016/j.jpowsour.2009.02.007. |
16 | ZHU L, PAN Y, LI L, et al. Preparation of CFx@C microcapsules as a high-rate capability cathode of lithium primary battery[J]. International Journal of Electrochemical Science, 2016, 11(1): 14-22. DOI: 10.1016/S1452-3981(23)15822-6. |
17 | DAI Y, CAI S D, WU L J, et al. Surface modified CFx cathode material for ultrafast discharge and high energy density[J]. Journal of Materials Chemistry A, 2014, 2(48): 20896-20901. DOI: 10.1039/C4TA05492J. |
18 | JIANG C, WANG B J, WU Z R, et al. Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell[J]. Nano Energy, 2020, 70: 104552. DOI: 10.1016/j.nanoen. 2020. 104552. |
19 | ZHONG G M, CHEN H X, HUANG X K, et al. High-power-density, high-energy-density fluorinated graphene for primary lithium batteries[J]. Frontiers in Chemistry, 2018, 6: 50. DOI: 10. 3389/fchem.2018.00050. |
20 | ROOT M J, DUMAS R, YAZAMI R, et al. The effect of carbon starting material on carbon fluoride synthesized at room temperature: Characterization and electrochemistry[J]. Journal of the Electrochemical Society, 2001, 148(4): A339. DOI: 10.1149/1. 1354612. |
21 | GROULT H, JULIEN C M, BAHLOUL A, et al. Improvements of the electrochemical features of graphite fluorides in primary lithium battery by electrodeposition of polypyrrole[J]. Electrochemistry Communications, 2011, 13(10): 1074-1076. DOI: 10.1016/j.elecom.2011.06.038. |
22 | JIANG C M, LI X J, YING Y B, et al. Fluorinated graphene-enabled durable triboelectric coating for water energy harvesting[J]. Small, 2021, 17(8): 2007805. DOI: 10.1002/smll.202007805. |
23 | AHMAD Y, DUBOIS M, GUÉRIN K, et al. Pushing the theoretical limit of Li-CFx batteries using fluorinated nanostructured carbon nanodiscs[J]. Carbon, 2015, 94: 1061-1070. DOI: 10.1016/j.carbon.2015.07.073. |
24 | WANG J L, SUN M H, LIU Y, et al. Unraveling nanoscale electrochemical dynamics of graphite fluoride by in situ electron microscopy: Key difference between lithiation and sodiation[J]. Journal of Materials Chemistry A, 2020, 8(12): 6105-6111. DOI: 10.1039/D0TA00093K. |
25 | AMATUCCI G G, PEREIRA N. Fluoride based electrode materials for advanced energy storage devices[J]. Journal of Fluorine Chemistry, 2007, 128(4): 243-262. DOI: 10.1016/j.jfluchem.2006.11.016. |
26 | LUO Z Y, WANG X, CHEN D W, et al. Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18809-18820. DOI: 10.1021/acsami.1c02064. |
[1] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[2] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[3] | Yueni MEI, Wenjie QU, Guangyu CHENG, Yonggui XIANG, Haiyan LU, Xiaodan SHAO, Yiming ZHANG, Ke WANG. Recent progress of cathode prelithiation strategies for lithium ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 77-89. |
[4] | Wenhao GONG, Meng LI, Tao ZHANG, Ruotao ZHANG, Yanxia LIU. Development and fabrication of high-energy and long-endurance Li-ion batteries for UAVs [J]. Energy Storage Science and Technology, 2024, 13(8): 2550-2558. |
[5] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[6] | Jianhang YANG, Wenting FENG, Junwei HAN, Xinru WEI, Chenyu MA, Changming MAO, Linjie ZHI, Debin KONG. Recent advances in rechargeable Li/Na-Cl2 batteries: From material construction to performance evaluation [J]. Energy Storage Science and Technology, 2024, 13(6): 1824-1834. |
[7] | Yuanyuan JIANG, Fangfang TU, Fangping ZHANG, Yinglai WANG, Jiawen CAI, Donghui YANG, Yanhong LI, Jiayuan XIANG, Xinhui XIA, Jipeng FU. Study on technology and mechanism of prelithiation for high-performance lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1435-1442. |
[8] | Xueli ZHANG, Weiqing SUN, Junhua ZHENG. Study on the influence of polyurethane-type solid-solid phase change energy storage materials on the temperature control effect of asphalt [J]. Energy Storage Science and Technology, 2024, 13(3): 841-843. |
[9] | Su YAN, Fangfang ZHONG, Junwei LIU, Mei DING, Chuankun JIA. Key materials and advanced characterization of high-energy-density flow battery [J]. Energy Storage Science and Technology, 2024, 13(1): 143-156. |
[10] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[11] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[12] | Miao LI, Yongli YU, Jianyang WU, Min LEI, Henghui ZHOU. Design of high-energy-density LiFePO4 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(7): 2045-2058. |
[13] | Zhun FENG. Ultra-flexible halloysite/polyaniline composite electrode based on graphene electrode [J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803. |
[14] | Chao TAN, Chao WANG. Study on the performance of functionalized graphene oxide as positive sulfur carrier for lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1025-1033. |
[15] | Panlei CAO, Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Fe3+ crosslinking reduced graphene oxides free-standing film by pre-encapsulated Fe3O4 nanospheres for lithium storage [J]. Energy Storage Science and Technology, 2023, 12(3): 710-720. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||