Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1835-1848.doi: 10.19799/j.cnki.2095-4239.2023.0919
• Energy Storage Materials and Devices • Previous Articles Next Articles
Renchao FENG1,2(), Yu DONG1,2, Xinyu ZHU1,2, Cai LIU1,2, Sheng CHEN1,2, Da LI3, Ruoyu GUO3, Bin WANG3, Jionghui WANG3(), Ning LI1,2(), Yuefeng SU1,2, Feng WU1,2
Received:
2023-12-19
Revised:
2024-01-03
Online:
2024-06-28
Published:
2024-06-26
Contact:
Jionghui WANG, Ning LI
E-mail:chao0420666@163.com;wangjh@minmetals.com;ningli@bit.edu.cn
CLC Number:
Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848.
Fig.2
SEM images of RGO (a) XRD images of graphite, GO and RGO (b) Raman spectra of graphite, GO and RGO (c) Schematic mechanism of graphene oxide insertion of sodium ions with different layer spacing (d) XPS diagram of graphene oxide at different annealing temperatures (e) Schematic diagram of preparation of rRGO and sRGO (f) Magic angle spin NMR of expanded graphite (g)"
Table 1
Electrochemical properties of graphite oxide-based anode material for typical sodium-ion batteries"
Samples | Capacity /(mAh/g) | Cyclability /(cycles,retention%@mA/g) | Rate capacity /(mAh/g@mA/g) | Refs. |
---|---|---|---|---|
HRGO300 | 365 | 3000,81@2000 | 131@10000 | |
EG-1h | 284 | 2000,73@100 | 91@200 | |
EGrO | 268 | 2000,60@500 | 163@500 | |
EGS | 372 | 200,86@100 | 86@372 | |
BF-rGO | 280 | 5000,89@1000 | 153@400 | |
RGO | 141 | 1000,45@40 | 95@1500 |
Fig. 3
Schematic diagram of porous graphene oxide preparation (a); Schematic diagram of the structure of graphite, graphite oxide and expanded graphite (b); Schematic diagram of anodizing device (c); Thermogravimetric curve (red) and microbusiness thermogravimetric curve (blue) of micrographite oxide (SGO) (d); Graphitized carbon nanofiber (GNFO) Thermogravimetric curves (red) and microbusiness thermogravimetric curves (blue) (e); SEM diagram of dense graphene oxide film (f); SEM diagram of loose graphene oxide film (g); Electrochemical properties of graphene oxide at different annealing temperatures (h)"
1 | CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. |
2 | CABELLO M, BAI X, CHYRKA T, et al. On the reliability of sodium co-intercalation in expanded graphite prepared by different methods as anodes for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): A3804-A3813. |
3 | ALI G, MEHMOOD A, HA H Y, et al. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries[J]. Scientific Reports, 2017, 7: 40910. |
4 | PAN J, ZHANG Y, LI L, et al. Polyanions enhance conversion reactions for lithium/sodium‐ion batteries: the case of SbVO4 nanoparticles on reduced graphene oxide [J]. Small Methods, 2019, 3(10): 1900231-1900240. |
5 | HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898. |
6 | LI D, MÜLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105. |
7 | YOON G, KIM H, PARK I, et al. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials, 2017, 7(2): 1601519. |
8 | DAULA S S U, KAMAL H M, MAHEDI H S, et al. Understanding Na-ion adsorption in nitrogen doped graphene oxide anode for rechargeable sodium ion batteries[J]. Applied Surface Science, 2022, 579: 152147. |
9 | TANG K, FU L J, WHITE R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials, 2012, 2(7): 873-877. |
10 | XIN S, YIN Y X, GUO Y G, et al. A high-energy room-temperature sodium-sulfur battery[J]. Advanced Materials, 2014, 26(8): 1261-1265. |
11 | WANG Z H, QIE L, YUAN L X, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon, 2013, 55: 328-334. |
12 | LI Z F, BOMMIER C, CHONG Z S, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. |
13 | RATHNAYAKE R M N M, DUIGNAN T T, SEARLES D J, et al. Exploring the effect of interlayer distance of expanded graphite for sodium ion storage using first principles calculations[J]. Physical Chemistry Chemical Physics, 2021, 23(4): 3063-3070. |
14 | WANG S Z, GONG F, YANG S Z, et al. Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28(34): 1801806. |
15 | WEN Y, HE K, ZHU Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033. |
16 | LUO X F, YANG C H, CHANG J K. Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets[J]. Journal of Materials Chemistry A, 2015, 3(33): 17282-17289. |
17 | OLSSON E, COTTOM J, AU H, et al. Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials [J]. Advanced Functional Materials, 2020, 30(17):1908209-1908218. |
18 | DING H B, WANG J, ZHOU J, et al. Building electrode skins for ultra-stable potassium metal batteries[J]. Nature Communications, 2023, 14(1): 2305. |
19 | ZHENG H, PARK D Y, KIM M S. Preparation and characterization of anode materials using expanded graphite/pitch composite for high-power Li-ion secondary batteries[J]. Research on Chemical Intermediates, 2014, 40(7): 2501-2507. |
20 | ZHOU X S, LIU X, XU Y, et al. An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(41): 23527-23534. |
21 | XU Y N, WEI Q L, XU C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode[J]. Advanced Energy Materials, 2016, 6(14): 1600389. |
22 | WANG Z H, SELBACH S M, GRANDE T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite[J]. RSC Advances, 2014, 4(8): 4069-4079. |
23 | LI Z Q, ZHANG L Y, GE X L, et al. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J]. Nano Energy, 2017, 32: 494-502. |
24 | BU Q J, ZHAO S, LIU X W, et al. Facile electro-exfoliation of binder-free expanded graphite paper electrode at low-potential in alkaline environment for all-solid-state capacitor[J]. Journal of Energy Storage, 2022, 50: 104254. |
25 | DIMIEV A, KOSYNKIN D V, ALEMANY L B, et al. Pristine graphite oxide[J]. Journal of the American Chemical Society, 2012, 134(5): 2815-2822. |
26 | AFANASOV I M, SAVCHENKO D V, IONOV S G, et al. Thermal conductivity and mechanical properties of expanded graphite[J]. Inorganic Materials, 2009, 45(5): 486-490. |
27 | GAO W, ALEMANY L B, CI L J, et al. New insights into the structure and reduction of graphite oxide[J]. Nature Chemistry, 2009, 1(5): 403-408. |
28 | ATALMIS G, SATTARKHANOV K, DEMIRALP M, et al. The effect of expanded natural graphite added at different ratios of metal hydride on hydrogen storage amount and reaction kinetics[J]. International Journal of Hydrogen Energy, 2024, 51: 256-265. |
29 | BU Q J, CAO X Y, LI S, et al. Synchronous synthesis of electro-exfoliated/oxidized binder-free expanded graphite paper at low potential for solid-state capacitor[J]. Journal of Energy Storage, 2022, 52: 104994. |
30 | DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448: 457-460. |
31 | DARABUT A M, LOBKO Y, YAKOVLEV Y, et al. Influence of thermal treatment on the structure and electrical conductivity of thermally expanded graphite[J]. Advanced Powder Technology, 2022, 33(12): 103884. |
32 | DREYER D R, JIA H P, TODD A D, et al. Graphite oxide: A selective and highly efficient oxidant of thiols and sulfides[J]. Organic & Biomolecular Chemistry, 2011, 9(21): 7292-7295. |
33 | EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. |
34 | ELBIDI M, RESUL M F M G, RASHID S A, et al. Preparation of eco-friendly mesoporous expanded graphite for oil sorption[J]. Journal of Porous Materials, 2023, 30(4): 1359-1368. |
35 | PEI S F, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3210-3228. |
36 | DAN R Q, CHEN W M, XIAO Z W, et al. N-doped biomass carbon/reduced graphene oxide as a high-performance anode for sodium-ion batteries[J]. Energy & Fuels, 2020, 34(3): 3923-3930. |
37 | GU E, LIU S H, ZHANG Z Z, et al. An efficient sodium-ion battery consisting of reduced graphene oxide bonded Na3V2(PO4)3 in a composite carbon network [J]. Journal of Alloys and Compounds, 2018, 767: 131-40. |
38 | 杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, 23(3): 193-200. |
YANG Y G, CHEN C M, WEN Y F, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, 23(3): 193-200. | |
39 | 曹宇臣, 郭鸣明. 石墨烯材料及其应用[J]. 石油化工, 2016, 45(10): 1149-1159. |
CAO Y C, GUO M M. Graphene materials and its applications[J]. Petrochemical Technology, 2016, 45(10): 1149-1159. | |
40 | KUMAR N A, GADDAM R R, VARANASI S R, et al. Sodium ion storage in reduced graphene oxide[J]. Electrochimica Acta, 2016, 214: 319-325. |
41 | ZHANG Y B, QIN J D, LOWE S E, et al. Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes[J]. Carbon, 2021, 177: 71-78. |
42 | LIU T, ZHANG R J, ZHANG X S, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119: 544-547. |
43 | CHO J S, LEE J K, KANG Y C. Graphitic carbon-coated FeSe2 hollow nanosphere-decorated reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion batteries[J]. Scientific Reports, 2016, 6: 23699. |
44 | DAVID L, SINGH G. Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on Li and Na cyclability[J]. Journal of Physical Chemistry C, 2014, 118(49): 28401-28408. |
45 | YAN D, XU X T, LU T, et al. Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries[J]. Journal of Power Sources, 2016, 316: 132-138. |
46 | XING Z Y, QI Y T, JIAN Z L, et al. Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4343-4351. |
47 | KUMAR N A, GADDAM R R, SURESH M, et al. Porphyrin-graphene oxide frameworks for long life sodium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(25): 13204-13211. |
48 | ZHAO H M, PANG X Y, ZHAI Z X. Preparation and antiflame performance of expandable graphite modified with sodium hexametaphosphate[J]. Journal of Polymers, 2015, 2015: 821297. |
49 | OKAMOTO Y. Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds[J]. The Journal of Physical Chemistry C, 2014, 118(1): 16-19. |
50 | LIU Y Y, MERINOV B V, GODDARD W A 3rd. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739. |
51 | HU Y J, WU M M, CHI F Y, et al. Ultralow-resistance electrochemical capacitor for integrable line filtering[J]. Nature, 2023, 624(7990): 74-79. |
52 | WAN J Y, SHEN F, LUO W, et al. In situ transmission electron microscopy observation of sodiation-desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode[J]. Chemistry of Materials, 2016, 28(18): 6528-6535. |
53 | WANG Y X, CHOU S L, LIU H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202-208. |
54 | BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. |
55 | XIAO N, TAN H T, ZHU J X, et al. High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9656-9662. |
56 | PARAKNOWITSCH J P, THOMAS A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science, 2013, 6(10): 2839-2855. |
57 | YAKOVLEV A V, FINAENOV A I, ZABUD'KOV S L, et al. Thermally expanded graphite: Synthesis, properties, and prospects for use[J]. Russian Journal of Applied Chemistry, 2006, 79(11): 1741-1751. |
58 | HUMMERS W S Jr, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
59 | ALAM S N, SHARMA N, KUMAR L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)[J]. Graphene, 2017, 6(1): 1-18. |
60 | POH H L, ŠANĚK F, AMBROSI A, et al. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties[J]. Nanoscale, 2012, 4(11): 3515-3522. |
61 | BOURLINOS A B, GOURNIS D, PETRIDIS D, et al. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids[J]. Langmuir, 2003, 19(15): 6050-6055. |
62 | GENGLER R Y N, BADALI D S, ZHANG D F, et al. Revealing the ultrafast process behind the photoreduction of graphene oxide[J]. Nature Communications, 2013, 4: 2560. |
63 | HONG Y Z, WANG Z Y, JIN X B. Sulfuric acid intercalated graphite oxide for graphene preparation[J]. Scientific Reports, 2013, 3: 3439. |
64 | ZHAO J, ZHANG Y Z, ZHANG F, et al. Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries[J]. Advanced Energy Materials, 2019, 9(7): 1803215. |
65 | RAMOS A, CAMEÁN I, CUESTA N, et al. Expanded graphitic materials prepared from micro-and nanometric precursors as anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 187: 496-507. |
66 | WANG Y, WANG C Y, WANG Y J, et al. Boric acid assisted reduction of graphene oxide: A promising material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(29): 18860-18866. |
67 | SUN Y G, TANG J, ZHANG K, et al. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries[J]. Nanoscale, 2017, 9(7): 2585-2595. |
68 | ISLAM M S, FAISAL S N, TONG L Y, et al. N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries[J]. Journal of Energy Storage, 2021, 37: 102453. |
69 | WENG Z, SU Y, WANG D W, et al. Graphene–cellulose paper flexible supercapacitors[J]. Advanced Energy Materials, 2011, 1(5): 917-922. |
70 | XIE Q X, BAO R R, XIE C, et al. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density[J]. Journal of Power Sources, 2016, 317: 133-142. |
71 | QIN W, LI D S, ZHANG X J, et al. ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries[J]. Electrochimica Acta, 2016, 191: 435-443. |
72 | SADEGHI M M, HUANG Y J, LIAN C, et al. Tunable electron-flexural phonon interaction in graphene heterostructures[J]. Nature, 2023, 617(7960): 282-286. |
73 | LEE K H, OH J, SON J G, et al. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6361-6368. |
74 | QU B H, MA C Z, JI G, et al. Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26(23): 3854-3859. |
75 | WANG H B, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794. |
76 | GOPALAKRISHNAN K, GOVINDARAJ A, RAO C N R. Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis[J]. Journal of Materials Chemistry A, 2013, 1(26): 7563-7565. |
77 | ZHANG J, LI C Q, PENG Z K, et al. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage[J]. Scientific Reports, 2017, 7(1): 4886. |
78 | KIM H, HONG J, PARK Y U, et al. Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. |
79 | LI W, ZHOU M, LI H M, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science, 2015, 8(10): 2916-2921. |
80 | HONG Z S, ZHEN Y C, RUAN Y R, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials, 2018: e1802035. |
81 | QIE L, CHEN W M, XIONG X Q, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science, 2015, 2(12): 1500195. |
82 | QUAN B, JIN A H, YU S H, et al. Solvothermal-derived S-doped graphene as an anode material for sodium-ion batteries[J]. Advanced Science, 2018, 5(5): 1700880-1700887. |
83 | LING C, MIZUNO F. Boron-doped graphene as a promising anode for Na-ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(22): 10419-10424. |
[1] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[2] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[3] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[4] | Haoran CAI, Lijue YAN, Xu YANG, Huilin PAN. Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2707-2714. |
[5] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[6] | Zhun FENG. Ultra-flexible halloysite/polyaniline composite electrode based on graphene electrode [J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803. |
[7] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[8] | Chao TAN, Chao WANG. Study on the performance of functionalized graphene oxide as positive sulfur carrier for lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1025-1033. |
[9] | Panlei CAO, Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Fe3+ crosslinking reduced graphene oxides free-standing film by pre-encapsulated Fe3O4 nanospheres for lithium storage [J]. Energy Storage Science and Technology, 2023, 12(3): 710-720. |
[10] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[11] | Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances [J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. |
[12] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[13] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[14] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[15] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||