Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 30-41.doi: 10.19799/j.cnki.2095-4239.2024.0599
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yijie YAO1,2(), Junwei ZHANG1,2, Yanjun ZHAO1,2, Hongcheng LIANG1,2, Dongni ZHAO1,2(
)
Received:
2024-07-01
Revised:
2024-09-05
Online:
2025-01-28
Published:
2025-02-25
Contact:
Dongni ZHAO
E-mail:582453117@qq.com;zdn129@lut.edu.cn
CLC Number:
Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(1): 30-41.
Table 1
Electrolyte additives and their role in sodium-ion batteries"
功能 | 添加剂 | 适用电极 |
---|---|---|
促进SEI形成 | 氟代碳酸乙烯酯(FEC) | HC负极和合金负极 |
1,3-丙烯磺酸内酯(PST) | HC负极 | |
硫酸乙烯酯(DTD) | HC负极 | |
碳酸亚乙烯酯(VC) | MoO2 负极 | |
三(三甲基硅烷)磷酸酯(TMSP) | Sn4P3 负极 | |
NaNO3 | 钠金属负极 | |
SbF3 | 钠金属负极 | |
促进CEI形成 | 己二腈(ADN) | Na0.76Ni0.3Fe0.4Mn0.3O2 |
NaNO2 | Na0.44MnO2正极和钠金属负极 | |
阻燃 | F-EPE,EFPN | Na0.44MnO2 正极和钠金属负极 |
提升电导率 | EMlmFSI | HC负极 |
抗过充 | 联苯 | Na0.44MnO2正极和钠金属负极 |
Table 2
Physicochemical properties of common ether solvents and carboxylate solvents[41-44]"
溶剂 | 熔点Tm/℃ | 沸点Th/℃ | 黏度 η/(mPa·s) | 介电常数 |
---|---|---|---|---|
乙二醇二甲醚(DME) | -58 | 84 | 0.46 | 7.18 |
二乙二醇二甲醚(DEGDME) | -64 | 162 | 1.06 | 7.4 |
四乙二醇二甲醚(TEGDME) | -46 | 111 | 3.39 | 7.53 |
1,3-二氧戊环(DOL) | -95 | 74 | 0.59 | 6.79 |
四氢呋喃(THF) | -108 | 65 | 0.46 | 7.52 |
乙酸甲酯(MA) | -84 | 57 | 0.36 | 6.68 |
乙酸乙酯(EA) | -84 | 77 | 0.45 | 6.02 |
丙酸乙酯(EP) | -74 | 99 | 0.5 | 5.76 |
丁酸乙酯(EB) | -93.3 | 121.3 | — | — |
1 | DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. DOI: 10.1002/aenm.201703137. |
2 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
3 | ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Letters, 2020, 5(11): 3544-3547. DOI: 10.1021/acsenergylett.0c02181. |
4 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. DOI: 10.1021/cr500192f. |
5 | WEST K, ZACHAU-CHRISTIANSEN B, JACOBSEN T, et al. Solid-state sodium cells—An alternative to lithium cells?[J]. Journal of Power Sources, 1989, 26(3/4): 341-345. DOI: 10.1016/0378-7753(89)80144-2. |
6 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. DOI: 10.19799/j.cnki.2095-4239.2020.0054. | |
7 | WANG Y Y, LAN H, DONG S, et al. A high-power rechargeable sodium-ion full battery operating at -40 ℃[J]. Advanced Functional Materials, 2024, 34(26): 2315498. DOI: 10.1002/adfm. 202315498. |
8 | GUO X Y, WANG Z B, DENG Z, et al. Design principles for aqueous Na-ion battery cathodes[J]. Chemistry of Materials, 2020, 32(16): 6875-6885. DOI: 10.1021/acs.chemmater.0c01582. |
9 | VIGNAROOBAN K, KUSHAGRA R, ELANGO A, et al. Current trends and future challenges of electrolytes for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2829-2846. DOI: 10.1016/j.ijhydene.2015.12.090. |
10 | LIANG X H, HWANG J Y, SUN Y K. Practical cathodes for sodium-ion batteries: Who will take the crown?[J]. Advanced Energy Materials, 2023, 13(37): 2301975. DOI: 10.1002/aenm. 202301975. |
11 | BAI X, WU N N, YU G C, et al. Recent advances in anode materials for sodium-ion batteries[J]. Inorganics, 2023, 11(7): 289. DOI: 10.3390/inorganics11070289. |
12 | XUE Y C, GAO M Y, WU M R, et al. A promising hard carbon-soft carbon composite anode with boosting sodium storage performance[J]. ChemElectroChem, 2020, 7(19): 4010-4015. DOI: 10.1002/celc.202000932. |
13 | 张广相, 马驰, 付传凯, 等. 钠离子电池低温电解质的研究进展与挑战[J]. 化学进展, 2023, 35(10): 1534-1543. DOI: 10.7536/PC230319. |
ZHANG G X, MA C, FU C K, et al. Advances and challenges of low-temperature electrolyte for sodium-ion batteries[J]. Progress in Chemistry, 2023, 35(10): 1534-1543. DOI: 10.7536/PC230319. | |
14 | YANG J Y, WANG M X, RUAN J F, et al. Research progress in non-aqueous low-temperature electrolytes for sodium-based batteries[J]. Science China Chemistry, 2024, 67(12): 4063-4084. DOI: 10.1007/s11426-024-1964-7. |
15 | ZHANG S S. Design aspects of electrolytes for fast charge of Li-ion batteries[J]. InfoMat, 2021, 3(1): 125-130. DOI: 10.1002/inf2.12159. |
16 | ZHANG S S, XU K, JOW T R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources, 2006, 156(2): 629-633. DOI: 10.1016/j.jpowsour.2005.04.023. |
17 | DOUCEY L, REVAULT M, LAUTIÉ A, et al. A study of the Li/Li+ couple in DMC and PC solvents Part 1: Characterization of LiAsF6/DMC and LiAsF6/PC solutions[J]. Electrochimica Acta, 1999, 44(14): 2371-2377. DOI: 10.1016/S0013-4686(98)00365-X. |
18 | KONDO K, SANO M, HIWARA A, et al. Conductivity and solvation of Li+ ions of LiPF6 in propylene carbonate solutions[J]. The Journal of Physical Chemistry B, 2000, 104(20): 5040-5044. DOI: 10.1021/jp000142f. |
19 | MUHURI P K, DAS B, HAZRA D K. Ionic association of some lithium salts in 1, 2-dimethoxyethane. A Raman spectroscopic and conductivity study[J]. The Journal of Physical Chemistry B, 1997, 101(17): 3329-3332. DOI: 10.1021/jp963747d. |
20 | PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. DOI: 10.1039/C8EE01286E. |
21 | LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews, 2022, 51(11): 4484-4536. DOI: 10.1039/D1CS00948F. |
22 | COHN A P, SHARE K, CARTER R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano Letters, 2016, 16(1): 543-548. DOI: 10.1021/acs.nanolett.5b04187. |
23 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. DOI: 10.1021/cr030203g. |
24 | PURUSHOTHAM U, TAKENAKA N, NAGAOKA M. Additive effect of fluoroethylene and difluoroethylene carbonates for the solid electrolyte interphase film formation in sodium-ion batteries: A quantum chemical study[J]. RSC Advances, 2016, 6(69): 65232-65242. DOI: 10.1039/C6RA09560G. |
25 | FONDARD J, IRISARRI E, COURRÈGES C, et al. SEI composition on hard carbon in Na-ion batteries after long cycling: Influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF)[J]. Journal of the Electrochemical Society, 2020, 167(7): 070526. DOI: 10.1149/1945-7111/ab75fd. |
26 | SONG X N, MENG T, DENG Y M, et al. The effects of the functional electrolyte additive on the cathode material Na0.76Ni0.3Fe0.4Mn0.3O2 for sodium-ion batteries[J]. Electrochimica Acta, 2018, 281: 370-377. DOI: 10.1016/j.electacta.2018.05.185. |
27 | PARK J, KU K, GIM J, et al. Multifunctional effect of Fe substitution in Na layered cathode materials for enhanced storage stability[J]. ACS Applied Materials & Interfaces, 2023, 15(32): 38454-38462. DOI: 10.1021/acsami.3c07068. |
28 | LV W X, ZHU C J, CHEN J, et al. High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives[J]. Chemical Engineering Journal, 2021, 418: 129400. DOI: 10.1016/j.cej.2021.129400. |
29 | YANG M, CHEN K A, LI H, et al. Molecular adsorption-induced interfacial solvation regulation to stabilize graphite anode in ethylene carbonate-free electrolytes[J]. Advanced Functional Materials, 2023, 33(47): 2306828. DOI: 10.1002/adfm. 202306828. |
30 | GUO Y P, LI D, XIONG R D, et al. Investigation of the temperature-dependent behaviours of Li metal anode[J]. Chemical Communications, 2019, 55(66): 9773-9776. DOI: 10. 1039/C9CC04897A. |
31 | HAN Y H, JIE Y L, HUANG F Y, et al. Enabling stable lithium metal anode through electrochemical kinetics manipulation[J]. Advanced Functional Materials, 2019, 29(46): 1904629. DOI: 10.1002/adfm.201904629. |
32 | DONG X L, WANG Y G, XIA Y Y. Promoting rechargeable batteries operated at low temperature[J]. Accounts of Chemical Research, 2021, 54(20): 3883-3894. DOI: 10.1021/acs.accounts. 1c00420. |
33 | HU L, DENG J J, LIN Y X, et al. Restructuring electrolyte solvation by a versatile diluent toward beyond 99.9% coulombic efficiency of sodium plating/stripping at ultralow temperatures[J]. Advanced Materials, 2024, 36(17): e2312161. DOI: 10.1002/adma.202312161. |
34 | QU G M, WEI H, ZHAO S S, et al. A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries[J]. Advanced Materials, 2024, 36(29): 2400370. DOI: 10.1002/adma.202400370. |
35 | CHAI D D, YAN H T, WANG X, et al. Retuning solvating ability of ether solvent by anion chemistry toward 4.5 V class Li metal battery[J]. Advanced Functional Materials, 2024, 34(8): 2310516. DOI: 10.1002/adfm.202310516. |
36 | CHEN K A, SHEN X H, LUO L B, et al. Correlating the solvating power of solvents with the strength of ion-dipole interaction in electrolytes of lithium-ion batteries[J]. Angewandte Chemie, 2023, 135(47): e202312373. DOI: 10.1002/ange.202312373. |
37 | LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges[J]. Chemistry, 2021, 27(64): 15842-15865. DOI: 10.1002/chem. 202101407. |
38 | YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie (International Ed), 2021, 60(8): 4090-4097. DOI: 10.1002/anie.202011482. |
39 | MA T, NI Y X, WANG Q R, et al. Optimize lithium deposition at low temperature by weakly solvating power solvent[J]. Angewandte Chemie (International Ed), 2022, 61(39): e202207927. DOI: 10.1002/anie.202207927. |
40 | TANG Z, WANG H, WU P F, et al. Electrode-electrolyte interfacial chemistry modulation for ultra-high rate sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2022, 61(18): e202200475. DOI: 10.1002/anie.202200475. |
41 | KIM H, HONG J, PARK Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. DOI: 10.1002/adfm. 201402984. |
42 | SU D W, KRETSCHMER K, WANG G X. Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: A case study of ZnS nanospheres[J]. Advanced Energy Materials, 2016, 6(2): 1501785. DOI: 10.1002/aenm. 201501785. |
43 | LAI P B, HUANG B Y, DENG X D, et al. A localized high concentration carboxylic ester-based electrolyte for high-voltage and low temperature lithium batteries[J]. Chemical Engineering Journal, 2023, 461: 141904. DOI: 10.1016/j.cej.2023.141904. |
44 | ZHANG J, WANG D W, LV W, et al. Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges[J]. Advanced Energy Materials, 2018, 8(26): 1801361. DOI: 10.1002/aenm.201801361. |
45 | ZHOU X Z, HUANG Y H, WEN B, et al. Regulation of anion-Na+ coordination chemistry in electrolyte solvates for low-temperature sodium-ion batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(5): e2316914121. DOI: 10.1073/pnas.2316914121. |
46 | YUAN S, CAO S K, CHEN X, et al. Deshielding anions enable solvation chemistry control of LiPF6-based electrolyte toward low-temperature lithium-ion batteries[J]. Advanced Materials, 2024, 36(16): e2311327. DOI: 10.1002/adma.202311327. |
47 | 张晶晶, 崔孝玲, 赵冬妮, 等. 高浓度电解液对电极/电解液界面的影响[J]. 储能科学与技术, 2021, 10(1): 143-149. DOI: 10.19799/j.cnki.2095-4239.2020.0238. |
ZHANG J J, CUI X L, ZHAO D N, et al. Effects of concentrated electrolytes on the electrode/electrolyte interface[J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. DOI: 10.19799/j.cnki.2095-4239.2020.0238. | |
48 | SMART M C, RATNAKUMAR B V, CHIN K B, et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157(12): A1361. DOI: 10.1149/1.3501236. |
49 | PARK K, JO Y, KOO B, et al. Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte[J]. Chemical Engineering Journal, 2022, 427: 131889. DOI: 10.1016/j.cej.2021.131889. |
50 | PARK G, LEE K, YOO D J, et al. Strategy for stable interface in lithium metal batteries: Free solvent derived vs anion derived[J]. ACS Energy Letters, 2022, 7(12): 4274-4281. DOI: 10.1021/acsenergylett.2c02399. |
51 | YAMADA Y, YAMADA A. Review—Superconcentrated electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2406-A2423. DOI: 10.1149/2. 0041514jes. |
52 | JIANG G X, LI F, WANG H P, et al. Perspective on high-concentration electrolytes for lithium metal batteries[J]. Small Structures, 2021, 2(5): 2000122. DOI: 10.1002/sstr.202000122. |
53 | TIAN Z N, ZOU Y G, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science, 2022, 9(22): e2201207. DOI: 10.1002/advs.202201207. |
54 | HOLOUBEK J, LIU H D, WU Z H, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, 6: 303-313. DOI: 10.1038/s41560-021-00783-z. |
55 | ZHENG J M, CHEN S R, ZHAO W G, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3(2): 315-321. DOI: 10.1021/acsenergylett.7b01213. |
56 | YANG C, LIU X W, LIN Y, et al. Entropy-driven solvation toward low-temperature sodium-ion batteries with temperature-adaptive feature[J]. Advanced Materials, 2023, 35(28): e2301817. DOI: 10.1002/adma.202301817. |
57 | CHEN Y Q, HE Q, ZHAO Y, et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery[J]. Nature Communications, 2023, 14(1): 8326. DOI: 10.1038/s41467-023-43163-9. |
[1] | Guangyu CHENG, Xinwei LIU, Shuo LIU, Haitao GU, Ke WANG. Controlling electrolyte solvent components to enhance cycle life of LCO/C low-temperature 18650 batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2171-2180. |
[2] | Wentao WANG, Yifan WEI, Kun HUANG, Guowei LV, Siyao ZHANG, Xinya TANG, Zeyan CHEN, Qingyuan LIN, Zhipeng MU, Kunhua WANG, Hua CAI, Jun CHEN. Testing standards and developmental advances for low-temperature Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2300-2307. |
[3] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[4] | Haotian WANG, Yonggang WANG, Xiaoli DONG. Advances in low-temperature organic batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2259-2269. |
[5] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[6] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[7] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[8] | Fei ZHAO, Yinghua CHEN, Zheng MA, Qian LI, Jun MING. Advances in low-temperature electrolytes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2308-2316. |
[9] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[10] | Ying BAI. Research on the energy supply role of fuel cells in logistics transportation systems [J]. Energy Storage Science and Technology, 2024, 13(7): 2459-2461. |
[11] | Miao LI, Kerong GAI, Fengying ZHOU, Huan HUANG, Yongqiang YANG. Analysis of energy supply and storage characteristics of fuel cells in automotive engineering [J]. Energy Storage Science and Technology, 2024, 13(7): 2483-2485. |
[12] | Hongwei KAN, Xiaobin WU, Liang HE, Xinjian ZHANG, Guanfei XING. Influence of operating conditions on CV test of low temperature PEM water electrolysis single cells and mechanism analysis [J]. Energy Storage Science and Technology, 2024, 13(5): 1653-1657. |
[13] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[14] | Wei TAN, Ke MA, Weijing XU, Lin MI, Kaiyi CHEN. Design of a low-temperature rapid preheating system for an energy storage container battery system [J]. Energy Storage Science and Technology, 2023, 12(11): 3369-3378. |
[15] | Ziwei YUAN, Chuyuan LIN, Ziyan YUAN, Xiaoli SUN, Qingrong QIAN, Qinghua CHEN, Lingxing ZENG. The research process on low temperature performance of zinc ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 278-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||