Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1115-1122.doi: 10.19799/j.cnki.2095-4239.2024.1255
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Liping ZHOU1(), Deqing ZHOU1, Fenghua ZHENG2, Qichang PAN2, Sijiang HU2, Yongjie JIANG2, Hongqiang WANG2(
), Qingyu LI2
Received:
2024-12-30
Revised:
2025-01-17
Online:
2025-03-28
Published:
2025-04-28
Contact:
Hongqiang WANG
E-mail:zhoulp@eikto.cn;whq74@126.com
CLC Number:
Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122.
Fig. 3
(a) CV curves of the Si@Void@C electrode at a scan rate of 0.1 mV/s; (b) charge-discharge curves of Si, (c) Si@C, and (d) Si@Void@C composites; (e) cycling performance of Si, Si@C, and Si@Void@C electrodes at a current density of 0.5 A/g; (f) rate performance of Si, Si@C, and Si@Void@C electrodes"
1 | WANG H M, CHEN S S, FU C L, et al. Recent advances in conversion-type electrode materials for post lithium-ion batteries[J]. ACS Materials Letters, 2021, 3(7): 956-977. DOI: 10.1021/acsmaterialslett.1c00043. |
2 | COSTA C M, LEE Y H, KIM J H, et al. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes[J]. Energy Storage Materials, 2019, 22: 346-375. DOI: 10.1016/j.ensm.2019.07.024. |
3 | WANG Y L, YANG F Z, WU T B, et al. Roundly exploring the synthesis, structural design, performance modification, and practical applications of silicon-carbon composite anodes for lithium-ion batteries[J]. Journal of Energy Storage, 2024, 101: 113794. DOI: 10.1016/j.est.2024.113794. |
4 | LEI X C, WANG Y Y, WANG J Y, et al. Si-based high-entropy anode for lithium-ion batteries[J]. Small Methods, 2024, 8(1): e2300754. DOI: 10.1002/smtd.202300754. |
5 | ZHANG L, LIU X X, ZHAO Q J, et al. Si-containing precursors for Si-based anode materials of Li-ion batteries: A review[J]. Energy Storage Materials, 2016, 4: 92-102. DOI: 10.1016/j.ensm. 2016.01.011. |
6 | REN H L, SU Y, ZHAO S, et al. N and B co-doping to enhance Li adsorption and diffusion properties on silicene/graphene heterostructures: Insights from density functional theory[J]. Materials Science in Semiconductor Processing, 2025, 186: 109041. DOI: 10.1016/j.mssp.2024.109041. |
7 | ZENG S B, LIN Z, PENG J, et al. Synergistic structural integrity and remarkable structural stability of NC@Si anodes for lithium-ion batteries[J]. Materials Research Bulletin, 2025, 182: 113162. DOI: 10.1016/j.materresbull.2024.113162. |
8 | WANG B W, XUE K Y, XI L, et al. Enhanced strain mapping unveils internal deformation dynamics in silicon-based lithium-ion batteries during electrochemical cycling[J]. Materials & Design, 2024, 247: 113404. DOI: 10.1016/j.matdes.2024.113404. |
9 | ASHURI M, HE Q R, LIU Y Z, et al. Hollow silicon nanospheres encapsulated with a thin carbon shell: An electrochemical study[J]. Electrochimica Acta, 2016, 215: 126-141. DOI:10.1016/j.electacta.2016.08.059. |
10 | WEN Z H, LU G H, MAO S, et al. Silicon nanotube anode for lithium-ion batteries[J]. Electrochemistry Communications, 2013, 29: 67-70. DOI: 10.1016/j.elecom.2013.01.015. |
11 | ZHANG F F, WAN L, CHEN J T, et al. Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode[J]. Electrochimica Acta, 2018, 280: 86-93. DOI: 10.1016/j.electacta.2018.05.111. |
12 | PATHAK A D, CHANDA U K, SAMANTA K, et al. Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries[J]. Electrochimica Acta, 2019, 317: 654-662. DOI: 10.1016/j.electacta.2019.06.040. |
13 | FANG D L, ZHAO Y C, WANG S S, et al. Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction[J]. Electrochimica Acta, 2020, 330: 135346. DOI: 10.1016/j.electacta.2019.135346. |
14 | LIN C, OUYANG L Z, ZHOU C J, et al. A novel selenium-phosphorous amorphous composite by plasma assisted ball milling for high-performance rechargeable potassium-ion battery anode[J]. Journal of Power Sources, 2019, 443: 227276. DOI: 10.1016/j.jpowsour.2019.227276. |
15 | LIANG J S, HUO F L, ZHANG Z Y, et al. Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries[J]. Applied Surface Science, 2019, 476: 1000-1007. DOI: 10.1016/j.apsusc.2019.01.220. |
16 | ZHU M, YANG J, YU Z H, et al. Novel hybrid Si nanocrystals embedded in a conductive SiOx@C matrix from one single precursor as a high performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(15): 7026-7034. DOI: 10.1039/C7TA01254C. |
17 | KIM S J, KIM M C, HAN S B, et al. 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries[J]. Nano Energy, 2016, 27: 545-553. DOI: 10.1016/j.nanoen.2016.08.012. |
18 | LI C L, ZHU Y, QUAN Y, et al. Mitigating volume expansion of silicon-based anode through interfacial engineering based on intermittent discharge strategy[J]. Journal of Energy Chemistry, 2024, 98: 680-691. DOI: 10.1016/j.jechem.2024.07.019. |
19 | XIE J, TONG L, SU L W, et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources, 2017, 342: 529-536. DOI: 10.1016/j.jpowsour. 2016.12.094. |
20 | WANG D K, ZHOU C L, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318. DOI: 10.1016/j.ensm. 2019.07.045. |
21 | XU C, LINDGREN F, PHILIPPE B, et al. Improved performance of the silicon anode for Li-ion batteries: Understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chemistry of Materials, 2015, 27(7): 2591-2599. DOI:10.1021/acs.chemmater.5b00339. |
22 | LIN H Y, LI C H, WANG D Y, et al. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode[J]. Nanoscale, 2016, 8(3): 1280-1287. DOI: 10.1039/c5nr07152f. |
23 | PAN Q C, ZHANG Q B, ZHENG F H, et al. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries[J]. ACS Nano, 2018, 12(12): 12578-12586. DOI:10.1021/acsnano.8b07172. |
24 | HUANG Y G, PAN Q C, WANG H Q, et al. Preparation of a Sn@SnO2@C@MoS2 composite as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7185-7189. DOI: 10.1039/C6TA02080A. |
[1] | Xiaolan WU, Pengjie MA, Zhifeng BAI, Chenglong LIU, Guifang GUO, Jinhua ZHANG. A kind of intelligent PID double-layer active balancing control method for lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(3): 1150-1159. |
[2] | Shuangming DUAN, Tengfei LV, Junhui LI, Zhiqiang ZHAO, Haojun LIU, Yuyi ZHENG. Life cycle benefit evaluation of shared energy storage based on improved TOPSIS-ANP-CRITIC [J]. Energy Storage Science and Technology, 2025, 14(3): 1210-1223. |
[3] | Ruixing QUAN, Wenjing MIAO, Changshun YUAN, Guanggui CHNEG, Yanqi ZHAO. Advancements in polyethylene glycol-based form-stable composite phase change materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1010-1025. |
[4] | Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG, Gaoyun WU, Zufan WANG, Haisen ZHAO. Energy efficiency analysis model and experimental verification of vertical gravity energy storage system based on belt drive [J]. Energy Storage Science and Technology, 2025, 14(3): 1141-1149. |
[5] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
[6] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[7] | Yangfeng WANG, Bo REN, Hongtao WANG, Shuandi HOU. Research progress on key technologies and industrialization of carbon fiber paper for proton exchange membrane fuel cells [J]. Energy Storage Science and Technology, 2025, 14(3): 984-996. |
[8] | Yida LIU, Li ZHAO, Ruihua CHEN, Bin ZHANG. Industrial application dimensions and formal configuration of the integration of energy storage and digital technology [J]. Energy Storage Science and Technology, 2025, 14(3): 1070-1086. |
[9] | Zixin XIAO, Hong ZHANG, Lin XU. Nanowires modulating ion transport and interfaces in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. |
[10] | Xiaolong SUN, Haiting GONG, Zhen CHEN, Zhen WANG, Rong HUANG, Xianglei LIU. Synergistic enhancement of heat and mass transfer and heat storage characteristics in calcium-based thermochemical heat storage reactors [J]. Energy Storage Science and Technology, 2025, 14(3): 1198-1209. |
[11] | Liqiang SUN, Shaojia DANG, Gang LIU, Shenyou WANG, Pengfei HU. A frequency-modulation power optimization method for energy storage power stations considering the transition state of charge-discharge and power constraints [J]. Energy Storage Science and Technology, 2025, 14(3): 1286-1298. |
[12] | Han LI, Gang YU, Ershu XU, Zhirong LIAO, Qiang WANG, Chen CHEN, Yuepeng XING. Dynamic modeling and simulation of solar thermal power storage systems [J]. Energy Storage Science and Technology, 2025, 14(3): 1234-1246. |
[13] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[14] | Xinyuan JIA, Xianfu ZHANG, Long ZHANG. Research progress on micromodification and macrodesign of Zn powder anodes in aqueous Zn metal batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 913-929. |
[15] | Xinyi NI, Xiaomeng XU, Luowei CAO, Le LI, Xuejia YAO, Guodong JIA. Simulation of ultrasonic guided wave propagation characteristics in multilayer heterogeneous absorber tubes with non-homogeneous salt films [J]. Energy Storage Science and Technology, 2025, 14(3): 1168-1176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||