Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 997-1009.doi: 10.19799/j.cnki.2095-4239.2024.1123
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Nan LI1(), Jing MA1, Tingxiu HUANG1, Yixing SHEN2, Min SHEN1, Yiyi JIANG1, Tao HONG1(
), Guoqiang MA1, Zifeng MA2
Received:
2024-11-27
Revised:
2024-12-25
Online:
2025-03-28
Published:
2025-04-28
Contact:
Tao HONG
E-mail:linan430316@163.com;hongtao_xg@sinochem.com
CLC Number:
Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes[J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009.
Table 2
Performance comparison of new nitrile additives in high-voltage lithium-ion batteries"
电池体系 | 电解液(如无特殊说明均指质量比) | 电压/V | 容量保持率/% | 参考文献 |
---|---|---|---|---|
LiNi0.6Mn0.2Co0.2O2/ silicon–graphite | 1.0 mol/L LiPF6-EC∶DEC(1∶1,体积比),5% FEC,2% VC,1.0% TEOSCN | 2.5~4.35 | 75.95(0.5C,364cycles,45 ℃) | [ |
Li/Li4Ti5O12 | 1.15 mol/L LiPF6-EC∶EMC∶DMC (1∶1∶1), 2.0% OS3 | 1.0~2.5 | 80.00(1.0C, 150cycles, 25 ℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶EMC∶DMC(1∶1∶1,体积比),0.5% 4-TB | 3.0~4.5 | 86.69(1.0C,100cycles, 25 ℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶EMC∶DEC(1∶1∶1,体积比),2.0%TCEB | 2.75~4.5 | 78.20(1.0C,200cycles,25 ℃) | [ |
LiNi1/3Co1/3Mn1/3O2/ graphite Li/LiMn2O4 | 1.0 mol/L LiPF6-EC∶DMC∶EMC(1∶1∶1),0.2% SDPN; 1.0 mol/L LiPF6-EC∶DMC∶EMC(1∶1∶1),0.5% SDPN | 3.0~4.6; 3.0~4.3 | 77.30(0.2C,100cycles, 25 ℃) 70.30(1.0C,200cycles, 55 ℃) | [ [ |
Li/LiCoO2 Li/graphite | 1.0 mol/L LiPF6-EC∶EMC(3∶7),1.0% PSPN | 3.0~4.4; 0.01~3.0 | 74.81(0.5C,200cycles, 25 ℃) 92.58(0.5C,200cycles, 25℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶EMC(3∶7),1.0%苯磺酰基乙腈(PSPAN) | 3.0~4.4 | 91.84(1.0C, 100cycles, 25 ℃) | [ |
Li/LiCoO2 | 1.0 mol/L LiPF6-EC∶DEC∶EMC(3∶2∶5),2.0% 4-苯甲腈三甲基硼酸酯(LBTB) | 3.0~4.4 | 73.21(1.0C,300cycles, 25 ℃) | [ |
Li/LiFePO4 Graphite/ LiNi0.6Co0.2Mn0.2O2 | 1.0 mol/L LiPF6-EC∶DMC∶DEC(1∶1∶1,体积比),1.0%CP; 1.0 mol/L LiPF6-EC∶EMC(1∶2),1.0% CP | 2.5~4.0; 3.0~4.5 | 76.70(1.0C,200cycles,60 ℃); 81.50(1.0C, 50cycles, 25 ℃) | [ [ |
LiCoO2/graphite | 1.0 mol/L LiPF6-EC∶DEC∶EMC(1∶1∶1),0.5%四氟对苯二腈(TFTPN) | 3.0~4.4 | 91.00(0.5C,300cycles, 25 ℃) | [ |
LiCoO2/graphite | 1.0 mol/L LiPF6-EC∶DEC∶EMC(1∶1∶1,体积比),5.0% FEC,1.0% BFBN | 3.0~4.55 | 80.00(0.5C,556cycles, 25 ℃; 148cycles, 45 ℃) | [ |
1 | LYU Y C, WU X, WANG K, et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000982. DOI: 10.1002/aenm.202000982. |
2 | WANG L L, CHEN B B, MA J, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density[J]. Chemical Society Reviews, 2018, 47(17): 6505-6602. DOI: 10.1039/c8cs00322j. |
3 | LI S, LI K L, ZHENG J Y, et al. Structural distortion-induced charge gradient distribution of Co ions in delithiated LiCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7537-7546. DOI: 10.1021/acs.jpclett.9b02711. |
4 | WU Z X, ZENG G F, YIN J H, et al. Unveiling the evolution of LiCoO2 beyond 4.6 V[J]. ACS Energy Letters, 2023, 8(11): 4806-4817. DOI: 10.1021/acsenergylett.3c01954. |
5 | ZHANG Z J, WANG J, SUN X Y, et al. Improved stability of single-crystal LiCoO2 cathodes at 4.8 V through solvation structure regulation[J]. Advanced Functional Materials, 2024, 34(48): 2411409. DOI: 10.1002/adfm.202411409. |
6 | ZHANG A P, BI Z H, WANG G R, et al. Regulating electrode/electrolyte interfacial chemistry enables 4.6 V ultra-stable fast charging of commercial LiCoO2[J]. Energy & Environmental Science, 2024, 17(9): 3021-3031. DOI: 10.1039/D4EE00676C. |
7 | LI W, WANG H W, ZHANG J K, et al. Non-sacrificial additive enables a non-passivating cathode interface for 4.6 V Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2024, 14(11): 2303458. DOI: 10.1002/aenm.202303458. |
8 | LI J Y, WANG J J, HUANG H, et al. Stabilization of LiCoO2 cathodes in high voltage lithium metal batteries through 2-(trifluoromethyl)benzamide (2-TFMBA) electrolyte additives[J]. Small, 2024, 20(29): 2400087. DOI: 10.1002/smll.202400087. |
9 | BIZUNEH G G, ZHU C L, HUANG J D, et al. Constructing highly Li+ conductive electrode electrolyte interphases for 4.6 V Li||LiCoO2 batteries via electrolyte additive engineering[J]. Small Methods, 2023, 7(9): e2300079. DOI: 10.1002/smtd.202300079. |
10 | UE M, IDA K, MORI S. Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors[J]. Journal of the Electrochemical Society, 141(11): 2989-2996. DOI: 10.1149/1.2059270. |
11 | CHEN S M, WEN K H, FAN J T, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(25): 11631-11663. DOI: 10.1039/c8ta03358g. |
12 | HOU J B, YANG M, WANG D Y, et al. Fundamentals and challenges of lithium ion batteries at temperatures between -40 and 60 ℃[J]. Advanced Energy Materials, 2020, 10(18): 1904152. DOI: 10.1002/aenm.201904152. |
13 | 时二波, 甘朝伦, 张鹏, 等. 氰基化合物在锂离子电池中研究进展[J]. 电源技术, 2020, 44(2): 281-284. DOI: 10.3969/j.issn.1002-087X.2020.02.036. |
SHI E B, GAN C L, ZHANG P, et al. Research progress of nitrile-based compounds for lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(2): 281-284. DOI: 10.3969/j.issn.1002-087X.2020.02.036. | |
14 | 邓邦为, 孙大明, 万琦, 等. 锂离子电池三元正极材料电解液添加剂的研究进展[J]. 化学学报, 2018, 76(4): 30-48. DOI: 10.6023/A17110517. |
DENG B W, SUN D W, WAN Y, al. Review of electrolyte additives for ternary cathode lithium-ion battery[J]. Acta Chimica Sinica, 2018, 76(4): 30-48. DOI: 10.6023/A17110517. | |
15 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. DOI: 10.1021/cr500003w. |
16 | ZHOU X, KOZDRA M, RAN Q, et al. 3-(2,2,2-Trifluoroethoxy)propionitrile-based electrolytes for high energy density lithium metal batteries[J]. Nanoscale, 2022, 14(46): 17237-17246. DOI: 10.1039/d2nr04801a. |
17 | AN K, TRAN Y H T, KWAK S, et al. Design of fire-resistant liquid electrolyte formulation for safe and long-cycled lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(48): 2106102. DOI: 10.1002/adfm.202106102. |
18 | LUO L B, CHEN K A, CHEN H, et al. Enabling ultralow-temperature (–70 ℃) lithium-ion batteries: Advanced electrolytes utilizing weak-solvation and low-viscosity nitrile cosolvent[J]. Advanced Materials, 2024, 36(5): 2308881. DOI: 10.1002/adma.202308881. |
19 | YAAKOV D, GOFER Y, AURBACH D, et al. On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range[J]. Journal of the Electrochemical Society, 2010, 157(12): A1383. DOI: 10.1149/1.3507259. |
20 | ROHAN R, KUO T C, LIN J H, et al. Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles[J]. The Journal of Physical Chemistry C, 2016, 120(12): 6450-6458. DOI: 10.1021/acs.jpcc.6b00980. |
21 | KIM Y S, LEE H, SONG H K. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8913-8920. DOI: 10.1021/am501671p. |
22 | DUNCAN H, SALEM N, ABU-LEBDEH Y. Electrolyte formulations based on dinitrile solvents for high voltage Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(6): A838-A848. DOI: 10.1149/2.088306jes. |
23 | LI M H, LIU Y, YANG X M, et al. Acetonitrile-based local high-concentration electrolytes for advanced lithium metal batteries[J]. Advanced Materials, 2024, 36(36): e2404271. DOI: 10.1002/adma.202404271. |
24 | MOON H, CHO S J, YU D E, et al. Nitrile electrolyte strategy for 4.9 V-class lithium-metal batteries operating in flame[J]. Energy & Environmental Materials, 2023, 6(3): e12383. DOI: 10.1002/eem2.12383. |
25 | YAMADA Y, FURUKAWA K, SODEYAMA K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046. DOI: 10.1021/ja412807w. |
26 | PENG Z, CAO X, GAO P Y, et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Advanced Functional Materials, 2020, 30(24): 2001285. DOI: 10.1002/adfm.202001285. |
27 | QIN T, YANG H Y, WANG L, et al. Molecule design for non-aqueous wide-temperature electrolytes via the intelligentized screening method[J]. Angewandte Chemie International Edition, 2024, 63(37): e202408902. DOI: 10.1002/anie.202408902. |
28 | 凡俊田, 董陶, 张兰, 等. 锂离子电池高压电解液研究进展[J]. 过程工程学报, 2018, 18(6): 1167-1177. DOI: 10.12034/j.issn.1009-606X.218133. |
FAN J T, DONG T, ZHANG L, et al. Advances on high-voltage electrolyte of lithium ion batteries[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1167-1177. DOI: 10.12034/j.issn.1009-606X.218133. | |
29 | 李南, 马国强, 车海英, 等. 密度泛函理论在高电压电解液设计中的应用[J]. 化工进展, 2019, 38(7): 3253-3264. DOI: 10.16085/j.issn.1000-6613.2018-1808. |
LI N, MA G Q, CHE H Y, et al. Application of density functional theory in the design of high potential electrolyte[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3253-3264. DOI: 10.16085/j.issn.1000-6613.2018-1808. | |
30 | 马国强, 王莉, 张建君, 等. 含有氟代溶剂或含氟添加剂的锂离子电解液[J]. 化学进展, 2016, 28(9): 1299-1312. DOI: 10.7536/PC151212. |
MA G Q, WANG L, ZHANG J J, et al. Lithium-ion battery electrolyte containing fluorinated solvent and additive[J]. Progress in Chemistry, 2016, 28(9): 1299-1312. DOI: 10.7536/PC 151212. | |
31 | LU D, LI R H, RAHMAN M M, et al. Ligand-channel-enabled ultrafast Li-ion conduction[J]. Nature, 2024, 627(8002): 101-107. DOI: 10.1038/s41586-024-07045-4. |
32 | OLDIGES K, VON ASPERN N, CEKIC-LASKOVIC I, et al. Impact of trifluoromethylation of adiponitrile on aluminum dissolution behavior in dinitrile-based electrolytes[J]. Journal of the Electrochemical Society, 2018, 165(16): A3773-A3781. DOI: 10.1149/2.0461816jes. |
33 | XU G J, SHANGGUAN X H, DONG S M, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3400-3415. DOI: 10.1002/anie.201906494. |
34 | GABRYELCZYK A, IVANOV S, BUND A, et al. Corrosion of aluminium current collector in lithium-ion batteries: A review[J]. Journal of Energy Storage, 2021, 43: 103226. DOI: 10.1016/j.est.2021.103226. |
35 | LIANG Y H, WU W B, LI D P, et al. Highly stable lithium metal batteries by regulating the lithium nitrate chemistry with a modified eutectic electrolyte[J]. Advanced Energy Materials, 2022, 12(47): 2202493. DOI: 10.1002/aenm.202202493. |
36 | ZHANG J N, WU H, DU X F, et al. Smart deep eutectic electrolyte enabling thermally induced shutdown toward high-safety lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(3): 2202529. DOI: 10.1002/aenm.202202529. |
37 | WU J X, LIANG Q H, YU X L, et al. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective[J]. Advanced Functional Materials, 2021, 31(22): 2011102. DOI: 10.1002/adfm.202011102. |
38 | AZMI S, KOUDAHI M F, FRACKOWIAK E. Reline deep eutectic solvent as a green electrolyte for electrochemical energy storage applications[J]. Energy & Environmental Science, 2022, 15(3): 1156-1171. DOI: 10.1039/D1EE02920G. |
39 | ZHAO L, XU A, CHENG Y, et al. A highly stable and non-flammable deep eutectic electrolyte for high-performance lithium metal batteries[J]. Angewandte Chemie International Edition, 2024, 63(43): e202411224. DOI: 10.1002/anie.202411224. |
40 | MA X S, WANG J K, WANG Z H, et al. Engineering strategies for high-voltage LiCoO2 based high-energy Li-ion batteries[J]. Electron, 2024, 2(3): e33. DOI: 10.1002/elt2.33. |
41 | WANG W L, ZENG X Y, HU H L, et al. 1,2,3,4-Tetrakis(2-cyanoethoxy)butane (TCEB)-assisted construction of self-repair electrode interface films to improve the performance of 4.5 V pouch LiCoO2/artificial graphite full cells operating at 45 ℃[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 59925-59936. DOI: 10.1021/acsami.1c18252. |
42 | LI X, HAN X P, LI G, et al. Nonsacrificial nitrile additive for armoring high-voltage LiNi0.83Co0.07Mn0.1O2 cathode with reliable electrode-electrolyte interface toward durable battery[J]. Small, 2022, 18(30): e2202989. DOI: 10.1002/smll.202202989. |
43 | TANG C, CHEN Y W, ZHANG Z F, et al. Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification[J]. Nano Research, 2023, 16(3): 3864-3871. DOI: 10.1007/s12274-022-4955-5. |
44 | YANG X R, LIN M, ZHENG G R, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy[J]. Advanced Functional Materials, 2020, 30(43): 2004664. DOI: 10.1002/adfm.202004664. |
45 | JI Y J, LI S G, ZHONG G M, et al. Synergistic effects of suberonitrile-LiBOB binary additives on the electrochemical performance of high-voltage LiCoO2 electrodes[J]. Journal of the Electrochemical Society, 2015, 162(13): A7015-A7023. DOI: 10.1149/2.0041513jes. |
46 | KIM G Y, DAHN J R. The effect of some nitriles as electrolyte additives in Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(3): A437-A447. DOI: 10.1149/2.0651503jes. |
47 | LI T T, LIN J L, XING L D, et al. Insight into the contribution of nitriles as electrolyte additives to the improved performances of the LiCoO2 cathode[J]. The Journal of Physical Chemistry Letters, 2022, 13(37): 8801-8807. DOI: 10.1021/acs.jpclett.2c02032. |
48 | ZHOU T, WANG J Z, LYU L, et al. Anion-π interaction and solvent dehydrogenation control enable high-voltage lithium-ion batteries[J]. Energy & Environmental Science, 2024, 17(23): 9185-9194. DOI: 10.1039/D4EE03027C. |
49 | ZHI H Z, XING L D, ZHENG X W, et al. Understanding how nitriles stabilize electrolyte/electrode interface at high voltage[J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6048-6052. DOI: 10.1021/acs.jpclett.7b02734. |
50 | DUAN K J, NING J R, ZHOU L, et al. 1-(2-Cyanoethyl)pyrrole enables excellent battery performance at high temperature via the synergistic effect of Lewis base and C≡N functional groups[J]. Chemical Communications, 2020, 56(60): 8420-8423. DOI: 10.1039/d0cc01528h. |
51 | SUN Z Y, ZHAO J W, ZHU M, et al. Critical problems and modification strategies of realizing high-voltage LiCoO2 cathode from electrolyte engineering[J]. Advanced Energy Materials, 2024, 14(8): 2303498. DOI: 10.1002/aenm.202303498. |
52 | 徐冲, 徐宁, 蒋志敏, 等. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. |
XU C, XU N, JIANG Z M, et al. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. DOI: 10.19799/j.cnki.2095-4239.2023.0212. | |
53 | LIAO B, HU X L, XU M Q, et al. Constructing unique cathode interface by manipulating functional groups of electrolyte additive for graphite/LiNi0.6Co0.2Mn0.2O2 cells at high voltage[J]. The Journal of Physical Chemistry Letters, 2018, 9(12): 3434-3445. DOI: 10.1021/acs.jpclett.8b01099. |
54 | LIAO B, LI H Y, WANG X S, et al. Significantly improved cyclability of lithium manganese oxide, simultaneously inhibiting electrochemical and thermal decomposition of the electrolyte by the use of an additive[J]. RSC Advances, 2017, 7(74): 46594-46603. DOI: 10.1039/C7RA07870F. |
55 | SHI P C, LIU F F, FENG Y Z, et al. The synergetic effect of lithium bisoxalatodifluorophosphate and fluoroethylene carbonate on dendrite suppression for fast charging lithium metal batteries[J]. Small, 2020, 16(30): e2001989. DOI: 10.1002/smll.202001989. |
56 | YANG T X, ZENG H N, WANG W L, et al. Lithium bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte additive for 5 V LiNi0.5Mn1.5O4-based lithium-ion batteries with enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2019, 7(14): 8292-8301. DOI: 10.1039/C9TA01293A. |
57 | FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. DOI: 10.1039/d1cs00450f. |
58 | PARK M W, PARK S, CHOI N S. Unanticipated mechanism of the trimethylsilyl motif in electrolyte additives on nickel-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43694-43704. DOI: 10.1021/acsami.0c11996. |
59 | MENG Y M, CHEN G R, SHI L Y, et al. operando Fourier transform infrared investigation of cathode electrolyte interphase dynamic reversible evolution on Li1.2Ni0.2Mn0.6O2[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45108-45117. DOI: 10.1021/acsami.9b17438. |
60 | AUPPERLE F, ESHETU G G, EBERMAN K W, et al. Realizing a high-performance LiNi0.6Mn0.2Co0.2O2/silicon-graphite full lithium ion battery cell via a designer electrolyte additive[J]. Journal of Materials Chemistry A, 2020, 8(37): 19573-19587. DOI: 10.1039/D0TA05827K. |
61 | GUILLOT S L, USREY M L, PEÑA-HUESO A, et al. Reduced gassing in lithium-ion batteries with organosilicon additives[J]. Journal of the Electrochemical Society, 2021, 168(3): 030533. DOI: 10.1149/1945-7111/abed25. |
62 | LEE H S, MA Z F, YANG X Q, et al. Synthesis of a series of fluorinated boronate compounds and their use as additives in lithium battery electrolytes[J]. Journal of the Electrochemical Society, 2004, 151(9): A1429. DOI: 10.1149/1.1779407. |
63 | LIU Q Y, YANG G J, LIU S, et al. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17435-17443. DOI: 10.1021/acsami.9b03417. |
64 | ZHANG Z, LIU F Y, HUANG Z Y, et al. Enhancing the electrochemical performance of a high-voltage LiCoO2 cathode with a bifunctional electrolyte additive[J]. ACS Applied Energy Materials, 2021, 4(11): 12954-12964. DOI: 10.1021/acsaem.1c02593. |
65 | JOW T R, XU Kang, BORODIN Oleg, et al. Electrolytes for lithium and lithium-ion batteries[M]. New York: Springer, 2014. |
66 | GUO K L, ZHU C L, WANG H P, et al. Conductive Li+ moieties-rich cathode electrolyte interphase with electrolyte additive for 4.6 V well-cycled Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2023, 13(20): 2204272. DOI: 10.1002/aenm.202204272. |
67 | ZHAO H J, YU X Q, LI J D, et al. Film-forming electrolyte additives for rechargeable lithium-ion batteries: Progress and outlook[J]. Journal of Materials Chemistry A, 2019, 7(15): 8700-8722. DOI: 10.1039/C9TA00126C. |
68 | XUE W J, GAO R, SHI Z, et al. Stabilizing electrode-electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte[J]. Energy & Environmental Science, 2021, 14(11): 6030-6040. DOI: 10.1039/D1EE01265G. |
69 | ZHENG X Z, HUANG T, PAN Y, et al. 3,3′-sulfonyldipropionitrile: A novel electrolyte additive that can augment the high-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries[J]. Journal of Power Sources, 2016, 319: 116-123. DOI: 10.1016/j.jpowsour.2016.04.053. |
70 | HUANG T, ZHENG X Z, PAN Y, et al. 3,3′-sulfonyldipropionitrile: A novel additive to improve the high temperature performance of lithium-ion battery[J]. Electrochimica Acta, 2015, 156: 328-335. DOI: 10.1016/j.electacta.2015.01.006. |
71 | ZUO X X, DENG X, MA X D, et al. 3-(Phenylsulfonyl)propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(30): 14725-14733. DOI: 10.1039/C8TA04558E. |
72 | DENG X, ZUO X X, LIANG H Y, et al. (Phenylsulfonyl)acetonitrile as a high-voltage electrolyte additive to form a sulfide solid electrolyte interface film to improve the performance of lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2019, 123(19): 12161-12168. DOI: 10.1021/acs.jpcc.9b02836. |
73 | SUN Z Y, ZHOU H B, LUO X H, et al. Design of a novel electrolyte additive for high voltage LiCoO2 cathode lithium-ion batteries: Lithium 4-benzonitrile trimethyl borate[J]. Journal of Power Sources, 2021, 503: 230033. DOI: 10.1016/j.jpowsour.2021.230033. |
74 | LIU Y L, WANG K, LIN Y L, et al. Tetrafluoroterephthalonitrile: a novel electrolyte additive for high-voltage lithium cobalt oxide/graphite battery [J]. Electrochimica Acta, 256: 307-315. |
[1] | Tao YE, Yijun WANG, Zilong TANG, Guoliang PAN. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid [J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. |
[2] | Xiaolan WU, Pengjie MA, Zhifeng BAI, Chenglong LIU, Guifang GUO, Jinhua ZHANG. A kind of intelligent PID double-layer active balancing control method for lithium-ion battery pack [J]. Energy Storage Science and Technology, 2025, 14(3): 1150-1159. |
[3] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
[4] | Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. |
[5] | Gongxun LU, Huadong YUAN, Jianmin LUO, Yao WANG, Yujing LIU, Peng SHI, Shihui ZOU, Guangmin ZHOU, Xinyong TAO, Jianwei NAI. Surface pre-treatment strategies for lithium metal: Advancement and perspective [J]. Energy Storage Science and Technology, 2025, 14(3): 947-964. |
[6] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[7] | Zixin XIAO, Hong ZHANG, Lin XU. Nanowires modulating ion transport and interfaces in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1026-1039. |
[8] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of 100 selected recent papers on lithium batteries (December 1, 2024 to January 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(3): 1310-1330. |
[9] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
[10] | Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 755-769. |
[11] | Zhenfei LIANG, Xingxing WANG, Haochen HU, Yanhong LI, Boxue OUYANG, Xiaoyun SUN, Ruimao GAO, Jun YE, Deren WANG. Advancements in electrolyte and membrane technologies for zinc-bromine flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 583-600. |
[12] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[13] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. |
[14] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[15] | Xunchang JIANG, Kelin YU, Daxiang YANG, Minhui LIAO, Yang ZHOU. Preparation of PDOL-based solid electrolyte by in-situ polymerization and its application in lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||