Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 659-670.doi: 10.19799/j.cnki.2095-4239.2024.0732
• Energy Storage System and Engineering • Previous Articles Next Articles
Jiabo LI1,2(), Zhixuan WANG1, Di TIAN1(
), Zhonglin SUN1
Received:
2024-08-02
Revised:
2024-08-22
Online:
2025-02-28
Published:
2025-03-18
Contact:
Di TIAN
E-mail:jianbool72@foxmail.com;tiandi@xsyu.edu.cn
CLC Number:
Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition[J]. Energy Storage Science and Technology, 2025, 14(2): 659-670.
1 | GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 109057. |
2 | LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806. |
3 | 刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015. |
LIU Y F, ZHAO G Q, PENG X Y. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015. | |
4 | KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: 228861. DOI:10.1016/j.jpowsour.2020.228861. |
5 | EL MEJDOUBI A, CHAOUI H, GUALOUS H, et al. Lithium-ion batteries health prognosis considering aging conditions[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6834-6844. |
6 | YU J B. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble[J]. Reliability Engineering & System Safety, 2018, 174: 82-95. |
7 | RAZAVI-FAR R, CHAKRABARTI S, SAIF M, et al. An integrated imputation-prediction scheme for prognostics of battery data with missing observations[J]. Expert Systems with Applications, 2019, 115: 709-723. DOI:10.1016/j.eswa.2018.08.033. |
8 | ALI M U, ZAFAR A, NENGROO S H, et al. Online remaining useful life prediction for lithium-ion batteries using partial discharge data features[J]. Energies, 2019, 12(22): 4366. |
9 | BAI G X, WANG P F, HU C. A self-cognizant dynamic system approach for prognostics and health management[J]. Journal of Power Sources, 2015, 278: 163-174. |
10 | TANG X P, YAO K, ZOU C F, et al. Predicting battery aging trajectory via a migrated aging model and Bayesian Monte Carlo method[J]. Energy Procedia, 2019, 158: 2456-2461. |
11 | WANG F K, HUANG C Y, MAMO T. Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries[J]. Applied Sciences, 2020, 10(10): 3549. |
12 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI:10.1109/TVT.2018.2805189. |
13 | 魏腾飞, 潘庭龙. 基于改进PSO优化LSTM网络的短期电力负荷预测[J]. 系统仿真学报, 2021, 33(8): 1866-1874. DOI: 10.16182/j.issn1004731x.joss.20-0297. |
WEI T F, PAN T L. Short-term power load forecasting based on LSTM neural network optimized by improved PSO[J]. Journal of System Simulation, 2021, 33(8): 1866-1874. | |
14 | LI S, FANG H J, SHI B. Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression[J]. Reliability Engineering & System Safety, 2021, 210: 107542. DOI:10.1016/j.ress.2021.107542. |
15 | 常春, 王瑛琦, 姜久春, 等. 基于主动方波激励检测锂离子电池早期内短路[J]. 电池, 2024, 54(1): 24-28. DOI:10.19535/j.1001-1579. 2024.01.006. |
CHANG C, WANG Y Q, JIANG J C, et al. Detection of early internal short circuit of Li-ion battery based on active square wave excitation[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 24-28. DOI:10.19535/j.1001-1579.2024.01.006. | |
16 | MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. DOI:10.1016/j.advengsoft.2016.01.008. |
17 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI:10.1162/neco.1997.9.8.1735. |
18 | SHI Y M, TIAN Y H, WANG Y W, et al. Learning long-term dependencies for action recognition with a biologically-inspired deep network[C]//2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 716-725. DOI:10.1109/ICCV.2017.84. |
[1] | Xuzhi WU, Jian GUO. An approach for remaining useful life prediction of power battery with improved grey wolf optimized GPR model [J]. Energy Storage Science and Technology, 2025, 14(2): 728-736. |
[2] | Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 755-769. |
[3] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[4] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. |
[5] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[6] | Yong LIU, Huaiwen YU, Dapeng LIU, Yong MU, Yingzhou WANG, Xiuyu ZHANG. Remaining useful life prediction of lithium-ion battery based on an ABC-LSTM model [J]. Energy Storage Science and Technology, 2025, 14(1): 331-345. |
[7] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[8] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[9] | Zhenwei ZHU, Jiawei MIAO, Xiayu ZHU, Xiaoxu WANG, Jingyi QIU, Hao ZHANG. Research progress in lithium-ion battery remaining useful life prediction based on machine learning [J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. |
[10] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[11] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[12] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[13] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[14] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[15] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||