Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3016-3029.doi: 10.19799/j.cnki.2095-4239.2024.0583
Previous Articles Next Articles
Received:
2024-06-28
Revised:
2024-07-19
Online:
2024-09-28
Published:
2024-09-20
Contact:
Fangfang YANG
E-mail:hening25@mail2.sysu.edu.cn;yangff7@mail.sysu.edu.cn
CLC Number:
Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features[J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029.
1 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
2 | 来振华,孔德群,陈斌,等.电动汽车锂电池安全问题诊断算法研究综述[C]//中国汽车工程学会. 2022中国汽车工程学会年会论文集(4). 北京奔驰汽车有限公司新能源研发与试验认证部, 2022: 10. DOI:10.26914/c.cnkihy.2022.091300. |
3 | 庞莹, 王婷婷. 锂离子电池剩余寿命预测方法研究进展[J]. 环境技术, 2022, 40(6): 23-27. DOI: 10.3969/j.issn.1004-7204.2022.06.007. |
PANG Y, WANG T T. Research progress of remaining useful life prediction for lithium ion batteries[J]. Environmental Technology, 2022, 40(6): 23-27. DOI: 10.3969/j.issn.1004-7204.2022.06.007. | |
4 | 张宇波, 王有元, 黄洞宁, 等. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233. |
ZHANG Y B, WANG Y Y, HUANG D N, et al. Prognostic method of lithium-ion battery lifetime degradation under various working conditions[J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233. | |
5 | BRACO E, SAN MARTÍN I, SANCHIS P, et al. State of health estimation of second-life lithium-ion batteries under real profile operation[J]. Applied Energy, 2022, 326: 119992. DOI: 10.1016/j.apenergy.2022.119992. |
6 | WIDODO A, SHIM M C, CAESARENDRA W, et al. Intelligent prognostics for battery health monitoring based on sample entropy[J]. Expert Systems with Applications, 2011, 38(9): 11763-11769. DOI: 10.1016/j.eswa.2011.03.063. |
7 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4: 383-391. DOI: 10.1038/s41560-019-0356-8. |
8 | FEI Z C, YANG F F, TSUI K L, et al. Early prediction of battery lifetime via a machine learning based framework[J]. Energy, 2021, 225: 120205. DOI: 10.1016/j.energy.2021.120205. |
9 | YANG D, ZHANG X, PAN R, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387-395. DOI: 10.1016/j.jpowsour.2018.03.015. |
10 | ZHANG Y J, LIU Y J, WANG J, et al. State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression[J]. Energy, 2022, 239: 121986. DOI: 10.1016/j.energy.2021.121986. |
11 | ZHOU R M, ZHU R, HUANG C G, et al. State of health estimation for fast-charging lithium-ion battery based on incremental capacity analysis[J]. Journal of Energy Storage, 2022, 51: 104560. DOI: 10.1016/j.est.2022.104560. |
12 | DENG Z W, HU X S, LI P H, et al. Data-driven battery state of health estimation based on random partial charging data[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5021-5031. DOI: 10.1109/TPEL.2021.3134701. |
13 | LYU Z Q, WANG G, GAO R J. Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework[J]. Energy, 2022, 251: 123852. DOI: 10.1016/j.energy. 2022.123852. |
14 | 肖浩逸, 何晓霞, 梁佳佳, 等. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341. |
XIAO H Y, HE X X, LIANG J J, et al. A lithium battery life-prediction method based on mode decomposition and machine learning[J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. DOI: 10.19799/j.cnki.2095-4239.2022.0341. | |
15 | PAULSON N H, KUBAL J, WARD L, et al. Feature engineering for machine learning enabled early prediction of battery lifetime[J]. Journal of Power Sources, 2022, 527: 231127. DOI: 10.1016/j.jpowsour.2022.231127. |
16 | YANG F F, WANG D, XU F, et al. Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model[J]. Journal of Power Sources, 2020, 476: 228654. DOI: 10.1016/j.jpowsour.2020.228654. |
17 | ZHANG Y, PENG Z, GUAN Y, et al. Prognostics of battery cycle life in the early-cycle stage based on hybrid model[J]. Energy, 2021, 221: 119901. DOI: 10.1016/j.energy.2021.119901. |
18 | SAXENA S, WARD L, KUBAL J, et al. A convolutional neural network model for battery capacity fade curve prediction using early life data[J]. Journal of Power Sources, 2022, 542: 231736. DOI: 10.1016/j.jpowsour.2022.231736. |
19 | YANG Y X. A machine-learning prediction method of lithium-ion battery life based on charge process for different applications[J]. Applied Energy, 2021, 292: 116897. DOI: 10.1016/j.apenergy. 2021.116897. |
20 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI: 10.1109/TVT.2018.2805189. |
21 | JIANG L D, LI Z X, HU C Y, et al. Flexible parallel neural network architecture model for early prediction of lithium battery life[J/OL]. arXiv:2401.16102, 2024. DOI: 10.48550/arXiv.2401.16102. |
22 | LI M Y, WEI M W, HE X, et al. Enhancing part features via contrastive attention module for vehicle re-identification[C]//2022 IEEE International Conference on Image Processing (ICIP). October 16-19, 2022, Bordeaux, France. IEEE, 2022: 1816-1820. DOI: 10.1109/ICIP46576.2022.9897943. |
23 | NIU B, WEN W L, REN W Q, et al. Single image super-resolution via a holistic attention network[M]//Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 191-207. DOI: 10.1007/978-3-030-58610-2_12. |
24 | WANG S D, HUANG L, JIANG D, et al. Improved multi-stream convolutional block attention module for sEMG-based gesture recognition[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 909023. DOI: 10.3389/fbioe.2022.909023. |
25 | JIANG M, YIN S L. Facial expression recognition based on convolutional block attention module and multi-feature fusion[J]. International Journal of Computational Vision and Robotics, 2023, 13(1): 21. DOI: 10.1504/ijcvr.2023.127298. |
26 | WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV), 2018. DOI: 10.1007/978-3-030-01234-2_1. |
27 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[1] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[2] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[3] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[4] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[5] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[6] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[7] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[8] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
[9] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[10] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[11] | Haiou SHI. Fault analysis and application of lithium battery based on deep learning [J]. Energy Storage Science and Technology, 2024, 13(6): 2054-2056. |
[12] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[13] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[14] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[15] | Jiamu YANG, Yuxin CHEN, Cheng LIAN, Zhi XU, Honglai LIU. Flow field analysis and structural optimization of coating die with electrode slurry [J]. Energy Storage Science and Technology, 2024, 13(4): 1109-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||