Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1861-1870.doi: 10.19799/j.cnki.2095-4239.2024.0007
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yuchao ZHANG1(), Fengjiao ZHANG1, Wei LOU1,2, Feixiang ZAN1, Linling WANG1, Anxu SHENG1, Xiaohui WU1, Jing CHEN1()
Received:
2024-01-03
Revised:
2024-01-25
Online:
2024-06-28
Published:
2024-06-26
Contact:
Jing CHEN
E-mail:zhangyuchao@hust.edu.cn;chenjing@hust.edu.cn
CLC Number:
Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact[J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870.
25 | LI C Y, DAI G F, LIU R Y, et al. Separation and recovery of nickel cobalt manganese lithium from waste ternary lithium-ion batteries[J]. Separation and Purification Technology, 2023, 306: 122559. |
26 | 吴越, 裴锋, 贾蕗路, 等. 从废旧磷酸铁锂电池中回收铝、铁和锂[J]. 电源技术, 2014, 38(4): 629-631. |
WU Y, PEI F, JIA L L, et al. Recovery of aluminum, iron and lithium from spent lithium iron phosphate batteries[J]. Chinese Journal of Power Sources, 2014, 38(4): 629-631. | |
27 | ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
28 | JUNG J C Y, SUI P C, ZHANG J J. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments[J]. Journal of Energy Storage, 2021, 35: 102217. |
29 | ZHANG Y C, WANG W Q, FANG Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching[J]. Waste Management, 2020, 102: 847-855. |
30 | LIANG Z L, CAI C, PENG G W, et al. Hydrometallurgical recovery of spent lithium ion batteries: Environmental strategies and sustainability evaluation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5750-5767. |
31 | MISHRA G, JHA R, MESHRAM A, et al. A review on recycling of lithium-ion batteries to recover critical metals[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108534. |
32 | GEROLD E, SCHINNERL C, ANTREKOWITSCH H. Critical evaluation of the potential of organic acids for the environmentally friendly recycling of spent lithium-ion batteries[J]. Recycling, 2022, 7(1): 4. |
33 | LI L, BIAN Y F, ZHANG X X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371. |
34 | LI L, GE J, CHEN R J, et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries[J]. Waste Management, 2010, 30(12): 2615-2621. |
35 | LI L, FAN E S, GUAN Y B, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
36 | CHEN D D, RAO S, WANG D X, et al. Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid- l-ascorbic acid system[J]. Chemical Engineering Journal, 2020, 388: 124321. |
37 | JIN S, MU D Y, LU Z A, et al. A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances[J]. Journal of Cleaner Production, 2022, 340: 130535. |
38 | MA Y Y, TANG J J, WANALDI R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching[J]. Journal of Hazardous Materials, 2021, 402: 123491. |
39 | QI Y P, MENG F S, YI X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries[J]. Journal of Cleaner Production, 2020, 251: 119665. |
40 | ZHENG X H, GAO W F, ZHANG X H, et al. Spent lithium-ion battery recycling-Reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. |
41 | YANG L M, GAO Z, LIU T, et al. Direct electrochemical leaching method for high-purity lithium recovery from spent lithium batteries[J]. Environmental Science & Technology, 2023, 57(11): 4591-4597. |
42 | LI H F, BERBILLE A, ZHAO X, et al. A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries[J]. Nature Energy, 2023, 8: 1137-1144. |
43 | MAO J F, YE C, ZHANG S L, et al. Toward practical lithium-ion battery recycling: Adding value, tackling circularity and recycling-oriented design[J]. Energy & Environmental Science, 2022, 15(7): 2732-2752. |
44 | WANG X T, GU Z Y, ANG E H, et al. Prospects for managing end-of-life lithium-ion batteries: Present and future[J]. Interdisciplinary Materials, 2022, 1(3): 417-433. |
45 | DUTTA D, KUMARI A, PANDA R, et al. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries[J]. Separation and Purification Technology, 2018, 200: 327-334. |
46 | 郭浩. 废旧三元锂离子电池正极材料中有价金属的回收研究[D]. 镇江: 江苏大学, 2022. |
GUO H. Research on the recycling of valuable metals in cathode materials from spent ternary lithium-ion batteries[D]. Zhenjiang: Jiangsu University, 2022. | |
47 | 杨健, 秦吉涛, 李芳成, 等. 废旧锂离子电池的湿法回收研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3261-3278. |
YANG J, QIN J T, LI F C, et al. Review of hydrometallurgical processes for recycling spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3261-3278. | |
48 | 杨玮娇, 马保中, 杨卜, 等. 硝酸浸出液中的铝高效脱除[J]. 有色金属工程, 2018, 8(4): 57-61. |
YANG W J, MA B Z, YANG B, et al. High-efficiency removal of aluminum from nitric acid leaching liquor[J]. Nonferrous Metals Engineering, 2018, 8(4): 57-61. | |
49 | 彭刚伟. 机械化学法强化废旧锂离子电池有价金属柔性浸出研究 [D]. 武汉: 华中科技大学, 2020. |
PENG G W. Study on mechanochemically enhanced mild leaching of valuable metals from spent lithium ion batteries [D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
50 | 蔡晨. 废旧锂离子电池水热强化乙酸浸出与资源化回收研究[D]. 武汉: 华中科技大学, 2020. |
CAI C. Study on Hydrothermal enhanced leaching with acetic acid for recovery of spent lithium ion batteries[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
51 | LIU T C, CHEN J, LI H L, et al. An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Separation and Purification Technology, 2020, 245: 116869. |
52 | LEI S Y, SUN W, YANG Y. Solvent extraction for recycling of spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2022, 424: 127654. |
53 | HUANG Y F, HAN G H, LIU J T, et al. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process[J]. Journal of Power Sources, 2016, 325: 555-564. |
54 | WEI Q, WU Y Y, LI S J, et al. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review[J]. The Science of the Total Environment, 2023, 866: 161380. |
1 | XU X Q, MU W N, XIAO T F, et al. A clean and efficient process for simultaneous extraction of Li, Co, Ni and Mn from spent lithium-ion batteries by low-temperature NH4Cl roasting and water leaching[J]. Waste Management, 2022, 153: 61-71. |
2 | LU Y Q, PENG K Y, ZHANG L G. Sustainable recycling of electrode materials in spent Li-ion batteries through direct regeneration processes[J]. ACS ES&T Engineering, 2022, 2(4): 586-605. |
3 | CRABTREE G. The coming electric vehicle transformation[J]. Science, 2019, 366(6464): 422-424. |
4 | CHEN M, MA X, CHEN B, et al. Recycling end-of-life electric vehicle lithium-ion batteries [J]. Joule, 2019, 3(11): 2622-2646. |
5 | RICHA K, BABBITT C W, GAUSTAD G, et al. A future perspective on lithium-ion battery waste flows from electric vehicles[J]. Resources, Conservation and Recycling, 2014, 83: 63-76. |
6 | 张英杰, 宁培超, 杨轩, 等. 废旧三元锂离子电池回收技术研究新进展[J]. 化工进展, 2020, 39(7): 2828-2840. |
ZHANG Y J, NING P C, YANG X, et al. Research progress on the recycling technology of spent ternary lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2828-2840. | |
7 | LI J, WANG G X, XU Z M. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. |
8 | DU K D, ANG E H, WU X L, et al. Progresses in sustainable recycling technology of spent lithium-ion batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1012-1036. |
9 | LI J J, LI L L, YANG R R, et al. Assessment of the lifecycle carbon emission and energy consumption of lithium-ion power batteries recycling: A systematic review and meta-analysis[J]. Journal of Energy Storage, 2023, 65: 107306. |
10 | ZHONG X H, LIU W, HAN J W, et al. Pretreatment for the recovery of spent lithium ion batteries: Theoretical and practical aspects[J]. Journal of Cleaner Production, 2020, 263: 121439. |
11 | WANG Y Q, AN N, WEN L, et al. Recent progress on the recycling technology of Li-ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 391-419. |
55 | XU R, XU W, WANG J G, et al. A review on regenerating materials from spent lithium-ion batteries[J]. Molecules, 2022, 27(7): 2285. |
56 | ZHAO Y L, YUAN X Z, JIANG L B, et al. Regeneration and reutilization of cathode materials from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 383: 123089. |
57 | ZHANG S, DENG C, YANG S Y, et al. An improved carbonate co-precipitation method for the preparation of spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material[J]. Journal of Alloys and Compounds, 2009, 484(1/2): 519-523. |
58 | SA Q N, GRATZ E, HE M N, et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream[J]. Journal of Power Sources, 2015, 282: 140-145. |
59 | PARK S H, KANG S H, BELHAROUAK I, et al. Physical and electrochemical properties of spherical Li1+ x(Ni1/3Co1/3Mn1/3)1– xO2 cathode materials[J]. Journal of Power Sources, 2008, 177(1): 177-183. |
60 | YAN S T, WANG R Z, SHAO C Y, et al. The strategy of entire recovery: From spent cathode material with high nickel content to new LiNi0.5Co0.2Mn0.3O2 and Li2CO3 powders[J]. Journal of Power Sources, 2019, 440: 227140. |
61 | ZHANG Z H, YU M, YANG B, et al. Regeneration of Al-doped LiNi1/3Co1/3Mn1/3O2 cathode material via a sustainable method from spent Li-ion batteries[J]. Materials Research Bulletin, 2020, 126: 110855. |
62 | LEE C K, RHEE K I. Preparation of LiCoO2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 17-21. |
63 | REN J, LI R H, LIU Y L, et al. The impact of aluminum impurity on the regenerated lithium nickel cobalt manganese oxide cathode materials from spent LIBs[J]. New Journal of Chemistry, 2017, 41(19): 10959-10965. |
64 | SA Q N, HEELAN J A, LU Y, et al. Copper impurity effects on LiNi1/3Mn1/3Co1/3O2 cathode material[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20585-20590. |
65 | MAKUZA B, TIAN Q H, GUO X Y, et al. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review[J]. Journal of Power Sources, 2021, 491: 229622. |
66 | ZHOU M X, LI B Y, LI J, et al. Pyrometallurgical technology in the recycling of a spent lithium ion battery: Evolution and the challenge[J]. ACS ES&T Engineering, 2021, 1(10): 1369-1382. |
12 | YAO L P, ZENG Q, QI T, et al. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries[J]. Journal of Cleaner Production, 2020, 245: 118820. |
13 | WU L, ZHANG F S, HE K, et al. Avoiding thermal runaway during spent lithium-ion battery recycling: A comprehensive assessment and a new approach for battery discharge [J]. Journal of Cleaner Production, 2022, 380: 135045. |
14 | 靳岩, 娄忠良. 一种废旧锂电池快速放电方法及放电处理设备: CN108808143B[P]. 2020-04-17. |
JIN Y, LOU Z. Rapid discharge method for waste lithium battery and discharge treatment equipment: CN108808143B[P]. 2020-04-17. | |
15 | XIAO J, GUO J, ZHAN L, et al. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions [J]. Journal of Cleaner Production, 2020, 255: 120064. |
16 | 蒋良兴, 郑文军, 张刚, 等. 废旧锂离子电池预处理的绿色放电技术研究[J]. 中南大学学报(自然科学版), 2023, 54(2): 684-693. |
JIANG L X, ZHENG W J, ZHANG G, et al. Research on pretreatment green discharge technology of spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2023, 54(2): 684-693. | |
17 | FANG Z, DUAN Q L, PENG Q K, et al. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling[J]. Journal of Cleaner Production, 2022, 359: 132116. |
18 | ZHANG G W, HE Y Q, FENG Y, et al. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis[J]. Journal of Cleaner Production, 2018, 199: 62-68. |
19 | ZHENG X H, ZHU Z W, LIN X, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4(3): 138-158. |
20 | YU D W, HUANG Z, MAKUZA B, et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review[J]. Minerals Engineering, 2021, 173: 107218. |
21 | WANG M M, TAN Q Y, LIU L L, et al. A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12799-12806. |
22 | LI L, DUNN J B, ZHANG X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment[J]. Journal of Power Sources, 2013, 233: 180-189. |
23 | KIM S, BANG J, YOO J, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. Journal of Cleaner Production, 2021, 294: 126329. |
24 | WERNER D M, MÜTZE T, PEUKER U A. Influence of pretreatment strategy on the crushing of spent lithium-ion batteries[J]. Metals, 2022, 12(11): 1839. |
67 | MAO J K, LI J, XU Z M. Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries[J]. Journal of Cleaner Production, 2018, 205: 923-929. |
68 | LIU P C, XIAO L, TANG Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1323-1332. |
69 | FAN M, CHANG X, MENG Q H, et al. Progress in the sustainable recycling of spent lithium-ion batteries[J]. SusMat, 2021, 1(2): 241-254. |
70 | 孙建勇. 采用硫酸化焙烧-水浸出工艺从LiNi1/3Co1/3Mn1/3O2中回收金属的研究[D]. 兰州: 兰州理工大学, 2018. |
SUN J Y. Study on metal recovery from LiNi1/3Co1/3Mn1/3O2 by sulfation roasting-water leaching process[D]. Lanzhou: Lanzhou University of Technology, 2018. | |
71 | FAN E S, LI L, LIN J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16144-16150. |
72 | WANG W Q, ZHANG Y C, LIU X G, et al. A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant[J]. ACS Sustainable Chemistry & Engineering, 2019: acssuschemeng.9b01564. |
73 | XIAO S W, REN G X, XIE M Q, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system[J]. Journal of Sustainable Metallurgy, 2017, 3(4): 703-710. |
74 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575: 75-86. |
75 | LI N, GUO J H, CHANG Z D, et al. Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting[J]. RSC Advances, 2019, 9(41): 23908-23915. |
76 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
77 | YANG T Z, LUO D, YU A P, et al. Enabling future closed-loop recycling of spent lithium-ion batteries: Direct cathode regeneration[J]. Advanced Materials, 2023, 35(36): e2203218. |
78 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
79 | NIE H H, XU L, SONG D W, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. |
80 | SHI Y, CHEN G, LIU F, et al. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes[J]. ACS Energy Letters, 2018, 3(7): 1683-1692. |
81 | SHI Y, CHEN G, CHEN Z. Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles[J]. Green Chemistry, 2018, 20(4): 851-862. |
82 | ZHAO S Q, ZHANG W X, LI G M, et al. Ultrasonic renovation mechanism of spent LCO batteries: A mild condition for cathode materials recycling[J]. Resources, Conservation and Recycling, 2020, 162: 105019. |
83 | ZHAO Q, HU L, LI W J, et al. Recovery and regeneration of spent lithium-ion batteries from new energy vehicles[J]. Frontiers in Chemistry, 2020, 8: 807. |
84 | LAN Y Q, LI X K, ZHOU G M, et al. Direct regenerating cathode materials from spent lithium-ion batteries[J]. Advanced Science, 2024, 11(1): e2304425. |
85 | WANG J X, JIA K, MA J, et al. Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage[J]. Nature Sustainability, 2023, 6: 797-805. |
86 | WANG T, LUO H M, FAN J T, et al. Flux upcycling of spent NMC111 to nickel-rich NMC cathodes in reciprocal ternary molten salts[J]. iScience, 2022, 25(2): 103801. |
87 | DU M, GUO J Z, ZHENG S H, et al. Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: Extracting Li from brine[J]. Chinese Chemical Letters, 2023, 34(6): 107706. |
[1] | Xu HUANG, Guoqiang ZU, Wei SI, Qi DING, Mingyang LIU, Wanxin TANG, Xiaolong JIN. Multi-time-scale optimal scheduling method for flexible resources at distribution stations: A case study of building microgrid considering virtual storage system [J]. Energy Storage Science and Technology, 2024, 13(2): 568-577. |
[2] | Yinuo YAN, Xueying SHAO, Jinglong LIANG, Le WANG. Study on microwave acid leaching of vanadium from calcified reconstructed steel slag [J]. Energy Storage Science and Technology, 2023, 12(5): 1461-1468. |
[3] | Feng WANG, Zhiqiang LIU, Keyong ZHANG, Guanrui WANG, Hongde YIN, Zihao JIA, Haihui ZHAO, Yang MI. Adjustable resource aggregation and scheduling in distribution transformer station areas based on time-of-use price and charge-discharge strategy of energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1204-1214. |
[4] | Cai TANG, Jiangmin JIANG, Xinfeng WANG, Guangfa LIU, Yanhua CUI, Quanchao ZHUANG. Research progress of Li/CF x primary batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1093-1109. |
[5] | Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field [J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626. |
[6] | Xiaoqian GENG, Yujie XU, Jingjian HUANG, Haoshu LIN, Xuehui ZHANG, Shuang SUN, Haisheng CHEN. Life cycle energy consumption and carbon emissions of advanced adiabatic compressed air energy storage [J]. Energy Storage Science and Technology, 2022, 11(9): 2971-2979. |
[7] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[8] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[9] | Linlin LI, Yujie WANG, Yifei MEN, Wei YANG, Hanbo ZOU, Shengzhou CHEN. Research progress of inorganic acids in hydrometallurgical recovery technology [J]. Energy Storage Science and Technology, 2021, 10(1): 68-76. |
[10] | Linlin LI, Linjuan CAO, Yongxiong MAI, Yifei MEN, Wei YANG, Shengzhou CHEN. Research progress of the organic acid of the hydrometallurgical recovery technology in spent Li ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1641-1650. |
[11] | CAO Yuliang. The opportunities and challenges of sodium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. |
[12] | YANG Junfeng, ZHENG Xiaoyu, HUI Dong, YANG Shuili, LUO Weihua, LI Xiaofei. Capacity demand analysis of energy storage in the sending-side of a power grid for accommodating large-scale renewables [J]. Energy Storage Science and Technology, 2018, 7(4): 698-704. |
[13] | FANG Zheng, CAO Yuliang, HU Yongsheng, CHEN Liquan, HUANG Xuejie. Economic analysis for room-temperature sodium-ion battery technologies [J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||