Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (12): 3616-3626.doi: 10.19799/j.cnki.2095-4239.2023.0684
• Special issue on composite thermal storage • Previous Articles Next Articles
Ziou YUAN1(), Feng WANG1,2(), Xingzhao QI1, Qi ZHANG1, Rui MA1
Received:
2023-09-30
Revised:
2023-10-22
Online:
2023-12-05
Published:
2023-12-09
Contact:
Feng WANG
E-mail:yuan980317@163.com;wangfeng@imut.edu.cn
CLC Number:
Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field[J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626.
1 | 吴骞, 袁文蛟, 王洁, 等. 工业废盐热处理技术研究进展[J]. 环境工程技术学报, 2022, 12(5): 1668-1680. |
WU Q, YUAN W J, WANG J, et al. Research progress of industrial waste salt thermal treatment technologies[J]. Journal of Environmental Engineering Technology, 2022, 12(5): 1668-1680. | |
2 | ROPER R, HARKEMA M, SABHARWALL P, et al. Molten salt for advanced energy applications: A review[J]. Annals of Nuclear Energy, 2022, 169: 108924. |
3 | GUO L L, LIU Q, YIN H Q, et al. Excellent corrosion resistance of 316 stainless steel in purified NaCl-MgCl2 eutectic salt at high temperature[J]. Corrosion Science, 2020, 166: 108473. |
4 | LI X J, XU T R, LIU M M, et al. Thermodynamic and kinetic corrosion behavior of alloys in molten MgCl2-NaCl eutectic: FPMD simulations and electrochemical technologies[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111624. |
5 | LAI X, YIN H Q, LI P, et al. Design optimization and thermal storage characteristics of NaNO3-NaCl-NaF molten salts with high latent heat and low cost for the thermal energy storage[J]. Journal of Energy Storage, 2022, 52: 104805. |
6 | DING W J, BONK A, BAUER T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review[J]. Frontiers of Chemical Science and Engineering, 2018, 12(3): 564-576. |
7 | WANG X X, DEL RINCON J, LI P W, et al. Thermophysical properties experimentally tested for NaCl-KCl-MgCl2 eutectic molten salt as a next-generation high-temperature heat transfer fluids in concentrated solar power systems[J]. Journal of Solar Energy Engineering, 2021, 143(4): 041005. |
8 | YIN H Q, WANG Z R, LAI X, et al. Optimum design and key thermal property of NaCl-KCl-CaCl2 eutectic salt for ultra-high-temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 236: 111541. |
9 | 魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431. |
WEI X L, XIE P, ZHANG X C, et al. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431. | |
10 | 赖敏明, 徐先宝, 李响. 工业废盐的处理及其资源化研究进展[J]. 应用化工, 2023, 52(1): 215-218, 222. |
LAI M M, XU X B, LI X. Research progress on treatment and resource utilization of industrial waste salt[J]. Applied Chemical Industry, 2023, 52(1): 215-218, 222. | |
11 | ZHOU H, ZHOU H, TANG L L, et al. Photoelectrocatalytic treatment and resource utilization of industrial waste salt for chlor-alkali electrolysis[J]. Journal of Applied Electrochemistry, 2023, 53(5): 963-975. |
12 | 周艳丽. 硫酸钠和氯化钠高盐废水分盐工艺研究[J]. 煤炭与化工, 2020, 43(6): 134-136, 140. |
ZHOU Y L. Study on salt separation process of high salt wastewater from sodium sulfate and sodium chloride[J]. Coal and Chemical Industry, 2020, 43(6): 134-136, 140. | |
13 | 丁志广, 郭键柄, 卢超. 化工废盐无害化处理的实验研究[J]. 无机盐工业, 2020, 52(2): 58-61. |
DING Z G, GUO J B, LU C. Experimental study on harmless disposal of chemical waste salts[J]. Inorganic Chemicals Industry, 2020, 52(2): 58-61. | |
14 | 王炼, 陈利芳, 高静静, 等. 化工行业废盐资源化现状及发展趋势[J]. 科技导报, 2021, 39(17): 9-16. |
WANG L, CHEN L F, GAO J J, et al. Status quo of industrial waste salt resource utilization and its development trend[J]. Science & Technology Review, 2021, 39(17): 9-16. | |
15 | 刘萍. 利用Materials Studio对锆钛酸铅进行结构模拟及性能研究[D]. 西安: 西安科技大学, 2013. |
LIU P. The structural simulation and performance study of lead zirconate titanate were carried out by Materials Studio[D]. Xi'an: Xi'an University of Science and Technology, 2013. | |
16 | 李扬. 相变材料热物性的分子模拟研究[D]. 郑州: 郑州大学, 2018. |
LI Y. Molecular simulation study on thermophysical properties of phase change materials[D]. Zhengzhou: Zhengzhou University, 2018. | |
17 | NI H O, WU J, SUN Z, et al. Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J]. Renewable Energy, 2019, 136: 955-967. |
18 | WANG J, WU J, SUN Z, et al. Molecular dynamics study of the transport properties and local structures of molten binary systems (Li, Na)Cl, (Li, K)Cl and (Na, K)Cl[J]. Journal of Molecular Liquids, 2015, 209: 498-507. |
19 | WU J E, WANG J A, NI H O, et al. Investigation of microscopic structure and ion dynamics in liquid Li(Na, K)EutecticCl systems by molecular dynamics simulation[J]. Applied Sciences, 2018, 8(10): 1874. |
20 | SUN H, ZHANG P, WANG J Q. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures[J]. Corrosion Science, 2018, 143: 187-199. |
21 | WANG J W, ZHOU H X, ZHANG C Z, et al. Influence of MgCl2 content on corrosion behavior of GH1140 in molten NaCl-MgCl2 as thermal storage medium[J]. Solar Energy Materials and Solar Cells, 2018, 179: 194-201. |
22 | WU J, NI H O, LIANG W S, et al. Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational Materials Science, 2019, 170: 109051. |
23 | XU T R, LI X J, WANG Y, et al. Development of deep potentials of molten MgCl2-NaCl and MgCl2-KCl salts driven by machine learning[J]. ACS Applied Materials & Interfaces, 2023,15(11): 14184-14195. |
24 | JIANG Y F, SUN Y P, JACOB R D, et al. Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I)[J]. Solar Energy Materials and Solar Cells, 2018, 178: 74-83. |
25 | 周妍. 六水氯化镁的新型混合盐配制及其膨胀石墨基复合相变材料研究[D]. 广州: 华南理工大学, 2018. |
ZHOU Y. Preparation of new mixed salts of magnesium chloride hexahydrate and its expanded graphite-based composite phase change materials[D]. Guangzhou: South China University of Technology, 2018. | |
26 | 喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024. |
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase changematerial[J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024. | |
27 | ZHANG T Y, WANG T Y, WANG K C, et al. Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage[J]. Solar Energy, 2021, 227: 468-476. |
28 | 美张卓敏, 程强, 王志超, 等. 微纳尺度传热[M]. 北京: 清华大学出版社, 2016: 395. |
ZHANG Z M, CHENG Q, WANG Z C, et al. Nano/microscale heat transfer[M]. Beijing: Tsinghua University Press, 2016: 395. | |
29 | RAO Z H, WANG S F, PENG F F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials[J]. International Journal of Heat and Mass Transfer, 2013, 66: 575-584. |
[1] | Hongbing CHEN, Chunyang LI, Congcong WANG, Men LI, Haoyang LU, Yuhang LIU, Yan ZHANG. Preparation and properties of binary composite phase-change materials based on solar low-temperature heat storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3663-3669. |
[2] | Liang WANG, Xin LIU, Changan WANG, Shengnian TIE. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material [J]. Energy Storage Science and Technology, 2023, 12(1): 79-85. |
[3] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[4] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[5] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[6] | ZHANG Yongle, ZHANG Xiaoming, WU Yuting, LU Yuanwei, MA Chongfang. Analysis of thermal performance of electromagnetic induction based molten salt heating system [J]. Energy Storage Science and Technology, 2019, 8(2): 319-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||